RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2025; 36(08): 1009-1012
DOI: 10.1055/s-0043-1773502
DOI: 10.1055/s-0043-1773502
letter
Indium-Catalyzed Tandem Cyanomethylation/Cyclization of α-Alkynyl α,β-unsaturated Ketones with 3-Azido-2-methylbut-3-en-2-ol toward Trisubstituted Furans
This work was supported by the NSFC (Nos. 22171196 and 21801179) and the Sichuan Science and Technology Program (Nos. 2022JDJQ0013 and 2022NSFSC1232).

Abstract
An indium-catalyzed cyanomethylation of α-alkynyl α,β-unsaturated ketones with 3-azido-2-methylbut-3-en-2-ol is presented. Furan-substituted propanenitriles were produced in yields of 29–97%. The reaction involves a nucleophile addition/cycloisomerization process.
Key word
furans - cyanomethylation - cyclization - alkynyl enones - azidomethylbutenol - cascade reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773502.
- Supporting Information
Publikationsverlauf
Eingereicht: 29. September 2024
Angenommen nach Revision: 08. November 2024
Artikel online veröffentlicht:
02. Dezember 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Chen VY, Kwon O. Angew. Chem. Int. Ed. 2021; 60: 8874
- 1b Nejrotti S, Prandi C. Synthesis 2021; 53: 1046
- 1c Bao X, Ren J, Yang Y, Ye X, Wang B, Wang H. Org. Biomol. Chem. 2020; 18: 7977
- 1d Qian D, Zhang J. Acc. Chem. Res. 2020; 53: 2358
- 1e Deepthi A, Babu BP, Balachandran AL. Org. Prep. Proced. Int. 2019; 51: 409
- 1f Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
- 1g Jia-Jie W, Zhu Y, Zhan Z.-P. Asian J. Org. Chem. 2012; 1: 108
- 1h Keay BA, Hopkins JM, Dibble PW. In Comprehensive Heterocyclic Chemistry III, Chap. 3.08. Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 571
- 1i Kirsch SF. Org. Biomol. Chem. 2006; 4: 2076
- 2a Yao T, Zhang X, Larock RC. J. Am. Chem. Soc. 2004; 126: 11164
- 2b Yao T, Zhang X, Larock RC. J. Org. Chem. 2005; 70: 7679
- 3a Patil NT, Wu H, Yamamoto Y. J. Org. Chem. 2005; 70: 4531
- 3b Oh CH, Reddy VR, Kim A, Rhim CY. Tetrahedron Lett. 2006; 47: 5307
- 3c Xiao Y, Zhang J. Angew. Chem. Int. Ed. 2008; 47: 1903
- 3d Liu R, Zhang J. Chem. Eur. J. 2009; 15: 9303
- 3e Xiao Y, Zhang J. Adv. Synth. Catal. 2009; 351: 617
- 3f Liu F, Yu Y, Zhang J. Angew. Chem. Int. Ed. 2009; 48: 5505
- 3g Liu F, Qian D, Li L, Zhao X, Zhang J. Angew. Chem. Int. Ed. 2010; 49: 6669
- 3h Gao H, Zhao X, Yu Y, Zhang J. Chem. Eur. J. 2010; 16: 456
- 3i Gao H, Wu X, Zhang J. Chem. Commun. 2010; 46: 8764
- 3j Gao H, Wu X, Zhang J. Chem. Eur. J. 2011; 17: 2838
- 3k Gao H, Zhang J. Chem. Eur. J. 2012; 18: 2777
- 3l Zhou L, Zhang M, Li W, Zhang J. Angew. Chem. Int. Ed. 2014; 53: 6542
- 3m Pathipati SR, van der Werf A, Eriksson L, Selander N. Angew. Chem. Int. Ed. 2016; 55: 11863
- 3n Wang L, Liu X, Wang M, Liu J. Org. Lett. 2016; 18: 2162
- 3o Liu S, Yang P, Peng S, Zhu C, Cao S, Li J, Sun J. Chem. Commun. 2017; 53: 1152
- 3p Du Q, Neudörfl J.-M, Schmalz H.-G. Chem. Eur. J. 2018; 24: 2379
- 3q Arroniz C, Chaubet G, Anderson EA. ACS Catal. 2018; 8: 8290
- 3r Qi J, Teng Q, Thirupathi N, Tung C.-H, Xu Z. Org. Lett. 2019; 21: 692
- 3s Qian L.-L, Yi R, Min X.-T, Hu Y.-C, Wan B, Chen Q.-A. Tetrahedron 2020; 76: 131327
- 3t Li Z, Peng J, He C, Xu J, Ren H. Org. Lett. 2020; 22: 5768
- 3u Kardile RD, Liu R.-S. Org. Lett. 2020; 22: 8229
- 3v Ge S, Zhang Y, Tan Z, Li D, Dong S, Liu X, Feng X. Org. Lett. 2020; 22: 3551
- 3w Zhou L, Xu B, Ji D, Zhang Z.-M, Zhang J. J. Chin. Chem. 2020; 38: 577
- 3x Kardile RD, Chao T.-H, Cheng M.-J, Liu R.-S. Angew. Chem. Int. Ed. 2020; 59: 10396
- 3y Xu Y, Sun J. Org. Lett. 2021; 23: 853
- 3z Li L, Kail S, Weber SM, Hilt G. Angew. Chem. Int. Ed. 2021; 60: 23661
- 4a Jung N, Bräse S. Angew. Chem. Int. Ed. 2012; 51: 12169
- 4b Hu B, DiMagno SG. Org. Biomol. Chem. 2015; 13: 3844
- 4c Fu J, Zanoni G, Anderson EA, Bi X. Chem. Soc. Rev. 2017; 46: 7208
- 4d Hayashi H, Kaga A, Chiba S. J. Org. Chem. 2017; 82: 11981
- 5a Hassner A, Ferdinandi ES, Isbister RJ. J. Am. Chem. Soc. 1970; 92: 1672
- 5b Zhang F.-L, Wang Y.-F, Lonca GH, Zhu X, Chiba S. Angew. Chem. Int. Ed. 2014; 53: 4390
- 5c Zhang F.-L, Zhu X, Chiba S. Org. Lett. 2015; 17: 3138
- 5d Zhang Z, Kumar RK, Li G, Wu D, Bi X. Org. Lett. 2015; 17: 6190
- 5e Lin C, Shen Y, Huang B, Liu Y, Cui S. J. Org. Chem. 2017; 82: 3950
- 5f Rasool F, Ahmed A, Hussain N, Yousuf SK, Mukherjee D. Org. Lett. 2018; 20: 4036
- 5g Nakanishi T, Kikuchi J, Kaga A, Chiba S, Terada M. Chem. Eur. J. 2020; 26: 8230
- 5h Han M, Yang M, Wu R, Li Y, Jia T, Gao Y, Ni H.-L, Hu P, Wang B.-Q, Cao P. J. Am. Chem. Soc. 2020; 142: 13398
- 5i Chakrabarty A, Mukherjee S. Org. Lett. 2020; 22: 7752
- 5j Zhong Z, Xiao Z, Liu X, Cao W, Feng X. Chem. Sci. 2020; 11: 11492
- 5k Chakrabarty A, Mukherjee S. Angew. Chem. Int. Ed. 2022; 61: e202115821
- 5l Lin Z, Ren H, Lin X, Yu X, Zheng J. J. Am. Chem. Soc. 2024; 146: 18565
- 6a The Chemistry of the Cyano Group 1970
- 6b Fleming FF. Nat. Prod. Rep. 1999; 16: 597
- 6c Fleming FF, Wang Q. Chem. Rev. 2003; 103: 2035
- 6d Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
- 7 A concise synthetic method towards 2-azidoallyl alcohols has been reported by Bi and co-workers, see: Liu Z, Liu J, Zhang L, Liao P, Song J, Bi X. Angew. Chem. Int. Ed. 2014; 53: 5305
- 8 InBr3-Catalyzed Cyanomethylation/Cyclization of α-Alkynyl α-Enones with 3-Azido-2-methylbut-3-en-2-ol (2): General Procedure Under a N2 atmosphere, a reaction tube equipped with a magnetic stirrer was charged with the appropriate alkynyl enone 1 (0.1 mmol), azido compound 2 (0.15 mmol), InBr3 (15 mol%), and toluene (1.0 mL), and the mixture was stirred at 40 °C for 24 h. The mixture was then cooled to r.t. and directly subjected to flash column chromatography (silica gel) or preparative TLC. 3-(2-Methyl-5-phenyl-3-furyl)-3-phenylpropanenitrile (3a) Colorless oil; yield: 26.7 mg (73%). 1H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 8.0 Hz, 2 H), 7.34–7.37 (m, 4 H), 7.28–7.29 (m, 3 H), 7.22 (t, J = 7.7 Hz, 1 H), 6.57 (s, 1 H), 4.25 (t, J = 8 Hz, 1 H), 2.95–2.97 (m, 2 H), 2.31 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 152.14, 148.11, 140.98, 130.61, 128.97, 128.64, 127.46, 127.18, 127.11, 123.40, 121.38, 118.42, 104.53, 38.43, 24.73, 12.00. HRMS (ESI): m/z [M + H]+ calcd for C20H18NO+: 288.1383; found: 288.1397.
For selected reviews, see:
For selected reviews, see: