Int J Sports Med 2000; 21(2): 107-112
DOI: 10.1055/s-2000-8869
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart ·New York

Controlled Lengthening or Shortening Contraction-Induced Damage is Followed by Fiber Hypertrophy in Rat Skeletal Muscle

 J. Komulainen1, 3 ,  R. Kalliokoski1, 2 ,  S. O. A. Koskinen3 ,  M. R. Drost4 ,  H. Kuipers4 ,  M. K. C. Hesselink4
  • 1 LIKES-Research Center for Sport and Health Sciences, Jyväskylä, Finland
  • 2 Department of Cell Biology, University of Jyväskylä, Finland
  • 3 Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Finland
  • 4 Department of Movement Sciences, Maastricht University, The Netherlands
Further Information

Publication History

Publication Date:
31 December 2000 (online)

To study the hypothesis that more severe damage, caused by controlled lengthening (L) contractions, results in greater myofiber hypertrophy compared to increase in fiber size followed shortening (S) contractions, tibialis anterior muscles of anesthesized male Wistar rats were subjected to 240 either L or S contractions. The highest increase in muscle β-glucuronidase activity, an indicator of muscle damage, was observed in L (7.1-fold) 4 days and in S (2.6-fold) 8 days postexercise. Dystrophin- and desmin-negative as well as fibronectin-positive fibers (signs of the early phase of damage) were observed immediately after exercise in the L group. At 4 days, massive myofiber injury was visible, and internally localized nuclei were present at 15 - 80 days after exercise in the L group. The shift towards more glycolytic fiber types (p < 0.05 in L and S) and an increased mean cross-sectional area of type IIX/B fibers (p < 0.001 in L and S) at 80 days were observed in both groups. The observed minor damage with unchanged myofiber structures following S induced, however, an increase in myofiber cross-sectional area of nearly the same magnitude as that following L, which was more damaging. The results do not support the hypothesis that fiber hypertrophy depends on the extent of the myofiber damage upon the exercised muscles.

References

  • 1 Armstrong R B, Laughlin M H. Metabolic indicators of fibre recruitment in mammalian muscles during locomotion.  J Exp Biol. 1985;  115 201-213
  • 2 Armstrong R B, Ogilvie R W, Schwane J A. Eccentric exercise-induced injury to rat skeletal muscle.  J Appl Physiol. 1983;  54 80-93
  • 3 Armstrong R B, Phelps R O. Muscle fiber type composition of the rat hindlimb.  Am J Anat. 1984;  171 259-272
  • 4 Barrett A J. Lysosomal enzymes. In: Dingle JT (ed) Lysosomes. A Laboratory Handbook. Amsterdam; North-Holland 1972: 46-126
  • 5 Bigard X A, Merino D, Serrurier B, Lienhard F, Guezennec Y C, Bockhold K J, Whalen R G. Role of weight-bearing function on expression of myosin isoforms during regeneration of rat soleus muscles.  Am J Physiol. 1996;  270 771
  • 6 Bornemann A, Schmalbruch H. Desmin and vimentin reactivity in regenerating human and rat muscles.  Clin Neuropathol. 1991;  10 29-30
  • 7 Darr K C, Schultz E. Exercise induced satellite cell activation in growing and mature muscle.  J Appl Physiol. 1987;  63 1816-1821
  • 8 Delp M D, Duan C. Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle.  J Appl Physiol. 1996;  80 261-270
  • 9 Ervasti J M, Campbell K P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin.  J Cell Biol. 1993;  122 809-823
  • 10 Fehr H G, Lotzerich H, Michna H. The influence of physical exercise on peritoneal macrophage functions: histochemical and phagocytic studies.  Int J Sports Med. 1988;  9 77-81
  • 11 Hesselink M KC, Kuipers H, Geurten P, van Straaten H. Structural damage and muscle strength after incremental number of isometric and forced lengthening contractions.  J Muscle Res Cell Motil. 1996;  17 335-341
  • 12 Hurme T, Kalimo H, Sandberg M, Lehto M, Vuorio E. Localization of type I and III collagen and fibronectin production in injured gastrocnemius muscle.   Lab Invest. 1991;  64 76-84
  • 13 Karpakka J, Väänänen K, Virtanen P, Savolainen J, Orava S, Takala T ES. The effects of remobilization and exercise on collagen synthesis in rat tendon.  Acta Physiol Scand. 1990;  139 139-145
  • 14 Komulainen J, Kytölä J, Vihko V. Running-induced muscle injury and myocellular enzyme release in rats.  J Appl Physiol. 1994;  77 2299-2304
  • 15 Komulainen J, Takala T ES, Kuipers H, Hesselink M KC. The disruption of myofibre structures in rat skeletal muscle after forced lengthening contractions.  Pflügers Arch - Eur J Physiol. 1998;  436 735-741
  • 16 Lehto M. Collagen and fibronectin in healing skeletal muscle injury. An experimental study in rats under variable states of physical activity.  Ann Univ Turku Med Ontol. 1983;  14 1
  • 17 Lieber R L, Schmitz M C, Mishra D K, Fridén J. Contractile and cellular remodeling in rabbit skeletal muscle after cycling eccentric contraction.  J Appl Physiol. 1994;  77 1926-1934
  • 18 McCully K K, Faulkner J A. Injury to skeletal muscle fibers of mice following lengthening contractions.  J Appl Physiol. 1985;  59 119-126
  • 19 McDonald J A. Fibronectin, a primitive matrix. In: Clark RAF, Henson PM (eds) The Molecular and Cellular Biology of Wound Repair. New York; Plenum 1992: 405-435
  • 20 McNeil P L, Khakee R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage.  Am J Pathol. 1992;  140 1097-1199
  • 21 Ohlendieck K. Towards an understanding of the dystrophin-glycoprotein complex: linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibers.  Eur J Cell Biol. 1996;  69 1-10
  • 22 Peterson G L. Simplification of protein assay of Lowry et al. which is more applicable.  Anal Biochem. 1977;  83 346-356
  • 23 Salminen A, Kihlström M. Lyosomal changes in mouse skeletal muscle during repair of exercise injuries.  Muscle Nerve. 1985;  8 269-279
  • 24 Schultz E, McCormick K M. Skeletal muscle satellite cells.  Rev Physiol Biochem Pharmacol. 1994;  123 213-257
  • 25 Snow M H. Satellite cell response in rat soleus muscle undergoing hypertrophy due to surgical ablation of synergists.  Anat Rec. 1990;  237 437-446
  • 26 Stauber W T, Miller G R, Grimmett J G, Knack K K. Adaptation of rat soleus muscles to 4 wk of intermittent strain.  J Appl Physiol. 1994;  77 58-62
  • 27 Takala T ES, Koskinen S OA, Ahtikoski A M, Komulainen J, Hesselink M, Kuipers H, Vihko V, Kovanen V. Long-term effects of forced muscle contractions on basement membrane collagen and its degradation.  Faseb J. 1998;  12 413
  • 28 Tidball J G. Inflammatory cell response to acute muscular injury.  Med Sci Sports Exerc. 1995;  27 1022-1032
  • 29 Tokuyasu K T, Dutton A H, Singer S J. Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken skeletal muscle.  J Cell Biol. 1982;  96 1727-1735
  • 30 Vihko V, Rantamäki J, Salminen A. Exhaustive physical exercise and acid hydrolase activity in mouse skeletal muscle: a histological study.  Histochemistry. 1978;  57 237-249
  • 31 Vihko V, Salminen A. Propagation and repair of exercise-induced skeletal fiber injury. In: Benzi G, Packer L, Silibrandi N (eds) Biochemical Aspects of Physical Exercise. Amsterdam; Elsevier 1986: 337-346

Ph.D Jyrki Komulainen

LIKES-Research Center for Sport and Health Sciences University Campus

FIN-40100 Jyväskylä

Finland

Phone: + 358 (14) 260 1574

Fax: + 358 (14) 260 1571

Email: komulain@maila.jyu.fi

    >