References
<A NAME="RS09501ST-1">1</A>
Current address: Fluorous Technologies, Inc., 970 William Pitt Way, Pittsburgh, PA
15238, USA
<A NAME="RS09501ST-2A">2a</A>
Beckwith ALJ.
Ingold KU. In
Rearrangement in Ground and Excited States
de Mayo P.
Academic Press;
New York:
1980.
p.170
<A NAME="RS09501ST-2B">2b</A>
Freidlina RKh.
Terent’ev AB. In
Advanced in Free Radical Chemistry
Williams GH.
Heyden & Son;
London:
1980.
p.32
<A NAME="RS09501ST-3">3</A>
Studer A.
Bossart M. In
Radicals in Organic Synthesis
Vol. 2:
Renaud P.
Sibi MP.
Wiley-VCH;
Weinheim:
2001.
p.62
Some representative references on intramolecular homolytic ipso substitutions:
<A NAME="RS09501ST-4A">4a</A>
Ryokawa A.
Togo H.
Tetrahedron
2001,
57:
5915
<A NAME="RS09501ST-4B">4b</A>
Leardini R.
McNab H.
Minozzi M.
Nanni D.
J. Chem. Soc. Perkin Trans 1
2001,
1072
<A NAME="RS09501ST-4C">4c</A>
Amrein S.
Bossart M.
Vasella T.
Studer A.
J. Org. Chem.
2000,
65:
4281
<A NAME="RS09501ST-4D">4d</A>
Bonfand E.
Forslund L.
Motherwell WB.
Vazquez S.
Synlett
2000,
475
<A NAME="RS09501ST-4E">4e</A>
Caddick S.
Shering CL.
Wadman SN.
Tetrahedron
2000,
56:
465
<A NAME="RS09501ST-4F">4f</A>
Miranda LD.
Cruz-Almanza R.
Alvarez-Garcia A.
Muchowski JM.
Tetrahedron Lett.
2000,
41:
631
<A NAME="RS09501ST-4G">4g</A>
Clive DL.
Kang S.
Tetrahedron Lett.
2000,
41:
1315
<A NAME="RS09501ST-4H">4h</A>
Wakabayashi K.
Yorimitsu H.
Shinokubo H.
Oshima K.
Org. Lett.
2000,
2:
1899
<A NAME="RS09501ST-4I">4i</A>
Clark AJ.
De Campo F.
Deeth RJ.
Filik RP.
Gatard S.
Hunt NA.
Lastecoueres D.
Thomas GH.
Verlhac J.-B.
Wongtap H.
J. Chem. Soc. Perkin Trans 1
2000,
671
<A NAME="RS09501ST-4J">4j</A>
Senboku H.
Hasegawa H.
Orito K.
Tokuda M.
Tetrahedron Lett.
2000,
41:
5699
<A NAME="RS09501ST-4K">4k</A>
Bowman WR.
Mann E.
Parr J.
J. Chem. Soc. Perkin Trans 1
2000,
2991
<A NAME="RS09501ST-4L">4l</A>
Alcaide B.
Rodriguez-Vicente A.
Tetrahedron Lett.
1998,
39:
6589
<A NAME="RS09501ST-4M">4m</A>
Crich D.
Hwang J.-T.
J. Org. Chem.
1998,
63:
2765
<A NAME="RS09501ST-4N">4n</A>
Amii H.
Kondo S.
Uneyama K.
Chem. Commun.
1998,
1845
<A NAME="RS09501ST-4O">4o</A>
Rosa AM.
Lobo AM.
Branco PS.
Prabhakar S.
Tetrahedron
1997,
53:
285
<A NAME="RS09501ST-4P">4p</A>
Giraud L.
Lacote E.
Renaud P.
Helv. Chim. Acta
1997,
80:
2148
<A NAME="RS09501ST-4Q">4q</A>
Mander LN.
Sherburn MS.
Tetrahedron Lett.
1996,
37:
4255
<A NAME="RS09501ST-4R">4r</A>
Lee E.
Whang HS.
Chung CK.
Tetrahedron Lett.
1995,
36:
913
<A NAME="RS09501ST-4S">4s</A>
Black M.
Cadogan JIG.
McNab H.
J. Chem. Soc., Chem. Commun.
1990,
395
<A NAME="RS09501ST-4T">4t</A>
Kohler JJ.
Speckamp WN.
Tetrahedron Lett.
1977,
631
<A NAME="RS09501ST-4U">4u</A>
Kohler JJ.
Speckamp WN.
Tetrahedron Lett.
1977,
635
<A NAME="RS09501ST-5">5</A>
Bowman WR.
Heaney H.
Joadan BM.
Tetrahedron
1991,
48:
10119
<A NAME="RS09501ST-6">6</A>
Harrowven DC.
Nunn MIT.
Newman NA.
Fenwick DR.
Tetrahedron Lett.
2001,
42:
961
<A NAME="RS09501ST-7">7</A>
Zhang W.
Pugh G.
Tetrahedron Lett.
2001,
42:
5613
<A NAME="RS09501ST-8A">8a</A>
Bonfand E.
Motherwell WB.
Pennell AMK.
Uddin MK.
Ujjainwalla F.
Heterocycles
1997,
46:
523
<A NAME="RS09501ST-8B">8b</A>
Motherwell WB.
Pennell AMK.
Ujjainwalla F.
J. Chem. Soc. Chem. Commun.
1992,
1067
<A NAME="RS09501ST-9A">9a</A>
da Mata MLEN.
Motherwell WB.
Ujjainwalla F.
Tetrahedron Lett.
1997,
38:
137
<A NAME="RS09501ST-9B">9b</A>
da Mata MLEN.
Motherwell WB.
Ujjainwalla F.
Tetrahedron Lett.
1997,
38:
141 ; see also ref.
<A NAME="RS09501ST-10">10</A>
Procedure for tinhydride reaction of homopropargyl benzosulfonate 1: A solution of Bu3SnH (4.6 mmole) and AIBN (4.6 mmole) in 50 mL of dry benzene was added to a refluxing
solution of 2 (4.6 mmole) in 90 mL of dry benzene over a period of 10 h via a syringe pump. After
an additional 4-6 h, the reaction mixture was concentrated in vacuo. Purification
of the residue by flash column chromatography on silica gel (gradient elution; 10%
EtOAc-hexanes then 100% EtOAc) furnished in order of elution, the cyclic α-tributyltin
substituted sultone 7 and α,β-unsaturated cyclic sultone 2. 1H NMR, IR and MS spectra of 2a and 2b are identical with those provided in the literature (ref.
[8]
) Analytical data for 7a: 1H NMR (300 MHz, CDCl3) δ 0.73 (t, 3 CH3), 0.40-1.30 (3 × 3 CH2), 2.17 (br dd, 1 H), 2.41 (qd, 1 H), 4.57 (d, 1 H), 4.66 (m, 1 H), 4.80 (td, 1 H),
5.21 (dt, 1 H), 7.43 (dd, 1 H), 7. 53 (t, 1 H), 7.68 (d, 1 H), 7.79 (d, 1 H), 8.18
(d, 1 H), 8.99 (d, 1 H). 13C NMR (75 MHz, CDCl3) δ 9.9 (t, 3 CH2), 12.0 (q, 3 CH3), 25.6 (t, 3 CH2), 27.0 (t, 3 CH2), 27.3 (t), 37.1 (d), 1.4 (d), 69.6 (t), 119.9 (d), 124.6 (d), 124.9 (d), 126.2 (d),
127.0 (s), 134.9 (d), 137.6 (s), 144.6 (s), 148.3 (d). IR(neat)1334 (SO2), 1150 (SO2) cm-1
. MS m/e (rel. intensity) 552 (M+-1, 10), 405(40), 361(97), 294(70), 262 (M+-SnBu3, 100). Analytical data for 7b: 1H NMR (300 MHz, CDCl3) δ 0.74 (t, 3 CH), 0.50-1.30 (3 × 3 CH2), 2.11 (br d, 1 H), 2.51 (qd, 1 H), 2.88 (s, 2 CH3), 3.78 (dd, 1 H), 4.63 (dd, 1 H), 4. 81 (m, 2 H), 7.15 (d, 1 H), 7.35 (d, 1 H), 7.
43 (t, 1 H), 7.51 (t, 1 H), 7.77 (d, 1 H), 8.24 (d, 1 H). 13C NMR (75 MHz, CDCl3) δ 10.2 (t, 3 CH2), 12.0 (q, 3 CH3), 25.6 (t, 3 CH2), 27.0 (t, 3 CH2), 27.6 (t), 43.8 (d), 43.8 (q, 2 CH3), 52.4 (d), 70.1 (t), 112.9 (d), 115.9 (d), 121.3 (d), 122.8 (d), 123.1 (d), 125.5
(d), 128.1 (s), 130.5 (s), 135.1 (s), 150.5 (s). IR(neat)1340 (SO2), 1153 (SO2) cm-1
. MS m/e (rel. intensity) 594 (M+ + 1, 25), 538(25), 332(24), 240(100).