Subscribe to RSS
DOI: 10.1055/s-2002-32952
Synthetic Studies Toward Tetrodecamycin: An Efficient Approach to the Core Structure of the Antibiotic
Publication History
Publication Date:
25 July 2002 (online)

Abstract
An efficient synthetic pathway to the core structure 5 of the polyketide antibiotic tetrodecamycin (1a) has been developed. Our approach features the acid-catalyzed cyclization of a tert-butyldimethylsilyl protected methyl α-(γ-hydroxyacyl) tetronate, leading to the novel tricyclic ring skeleton exhibited by 5. An insight into the mechanism of this key ring closure step has been gained. Furthermore an alternative pathway to this ring skeleton, based on a fluoride ion induced desilylation-cyclization sequence, has been disclosed.
Key words
tetrodecamycin - antibiotics - tetronic acid - cyclizations - dihydroxylations
- 1a Isolation 
            and biological evaluation:  
            Tsuchida T.Iinuma H.Nishida C.Kinoshita N.Sawa T.Hamada M.Takeuchi T. J. Antibiot. 1995, 48: 1104
- 1b Structure determination:  
            Tsuchida T.Iinuma H.Sawa R.Takahashi Y.Nakamura H.Nakamura KT.Sawa T.Naganawa H.Takeuchi T. J. Antibiot. 1995, 48: 1110
- For references to representative members of this class of natural products, see:
- 2a 
             
            Alvi KA.Nair BG.Rabenstein J.Davis G.Baker DD. J. Antibiot. 2000, 53: 110
- 2b 
             
            Arai K.Miyajima H.Mushiroda T.Yamamoto Y. Chem. Pharm. Bull. 1989, 37: 3229
- 2c 
             
            Jacobsen JP.Reffstrup T.Cox RE.Holker JSE.Boll PM. Tetrahedron Lett. 1978, 1081 ; and references therein
- 3 
             
            Paintner FF.Bauschke G.Kestel M. Tetrahedron Lett. 2000, 41: 9977
- 4 For a previous attempt to access 
            the 3,4-dihydro-2H,8H-furo[3,4-b]oxepine-5,6-dione 
            ring system, see:  
            Gelin S.Pollet P. Synth. Commun. 1980, 10: 805
- 5 
             
            Shing TKM.Tam EKW.Tai VW.-F.Chung IHF.Jiang Q. Chem.-Eur. J. 1996, 2: 50
- 6 
             
            Paintner FF.Allmendinger L.Bauschke G. Synthesis 2001, 2113
- Acyl tetronic acids are known to exist in four monoenolic tautomeric forms. Only exo-enol tautomer 15 is depicted in Scheme 4 for reasons of clarity. For a discussion of this tautomeric equilibria, see:
- 10a 
             
            Jacobsen JP.Reffstrup T.Boll PM. Acta Chem. Scand., Ser. B 1977, 31: 756
- 10b 
             
            Gelin S.Pollet P. Tetrahedron Lett. 1980, 21: 4491
- 10c 
             
            Eckert-Maksic M.Maksimovic L. J. Mol. Struct. Theochem 1987, 153: 121
- 10d 
             
            Broughton HB.Woodward PR. J. Comput.-Aided Mol. Des. 1990, 4: 147 ; and references therein
- 11 
             
            Bassindale AR.Stout T. J. Organomet. Chem. 1984, 271: C1
- 12 
             
            Schraml J.Kvicalovi M.Blechta V.Cermak J. Magn. Reson. Chem. 1997, 35: 659
- 14 
             
            Clemo NG.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1985, 2407
- 15 
             
            Dess DB.Martin JC. J. Org. Chem. 1983, 48: 4155
- 16 
             
            Pollet P.Gelin S. Tetrahedron 1978, 34: 1453
- The facile oxidation of sulfides to sulfones in the presence of C-C double bonds using catalytic osmium tetroxide and N-methylmorpholine-N-oxide or trimethylamine-N-oxide as co-oxidant has been reported:
- 18a 
             
            Kaldor SW.Hammond M. Tetrahedron Lett. 1991, 32: 5043
- 18b 
             
            Priebe W.Grynkiewicz G. Tetrahedron Lett. 1991, 32: 7353
- On the other hand, sulfides are known to be essentially inert to oxidation by osmium tetroxide under stoichiometric conditions:
- 19a 
             
            Stork G.van Tamelen EE.Friedman LJ.Burgstahler AW. J. Am. Chem. Soc. 1953, 75: 384
- 19b 
             
            Djerassi C.Engle RR. J. Am. Chem. Soc. 1953, 75: 3838
- 19c 
             
            Henbest HB.Khan SA. J. Chem. Soc., Chem. Commun. 1968, 1036
- 19d For chemoselective oxidations 
            of C-C double bonds in the presence of sulfides with catalytic OsO4 and 
            K3Fe(CN)6 as co-oxidant, see:  
            Walsh PJ.Ho PT.King B.Sharpless KB. Tetrahedron Lett. 1994, 35: 5129
- 20 
             
            Yamada T.Hagiwara H.Uda H. J. Chem. Soc., Chem. Commun. 1980, 838
References
(1 RS ,9 RS )-9-Methyl-2,5-dioxa-tricyclo[7.3.1.0 [3] [7] ] tridec-3(7),11-dien-6,8-dione(12). Colorless crystals (EtOAc); mp 144 °C; IR (KBr): 3061, 2928, 1776, 1611 cm-1; MS (CI, CH5 +): m/z (%) = 221(100) [M + H+]; 1H NMR (CDCl3): δ = 1.22 [s, 3 H, CH3-(C-9)], 1.97 (d, J = 17.9 Hz, 1 H, 10-H), 2.11 (dd, J = 16.1/6.5 Hz, 1 H, 13-H), 2.46 (d, J = 16.1 Hz, 1 H, 13-H), 2.73 (dd, J = 17.9/6.0 Hz, 1 H, 10-H), 4.52 (d, J = 16.7 Hz, 1 H, 4-H), 4.63 (d, J = 16.7 Hz, 1 H, 4-H), 5.31 (m, 1 H, 1-H) 5.73 (m, 1 H, 12-H), 6.18 (m, 1 H, 11-H); 13C NMR (CDCl3): δ = 25.9 [CH3-(C-9)], 34.4 (C-13), 37.3 (C-10), 44.7 (C-9), 65.4 (C-4), 76.6 (C-1), 102.7 (C-7), 121.4 (C-12), 135.2 (C-11), 168.8 (C-6), 176.8 (C-3), 198.2 (C-8); Anal. Calcd for C12H12O4 (220.23): C, 65.45; H, 5.64; Found: C, 65.68; H, 5.64.
8Crystallographic data for structure 12 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 182759. Copies of the data can be obtained free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: 44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk.
9E-Z isomers were assigned on the basis of 2D NMR according to Boll and co-workers: ref. 2c.
13Attempts to achieve fluoride ion induced cyclization of acyl tetronate 7 [TBAF·3H2O (1.0 equiv), THF, r.t.] were unsuccessful, due to preferential cleavage of the activated enol ether thus affording tetrabutylammonium salt i (Figure [3] ) on aqueous work up.
17Treatment of 24 with osmium tetroxide (2 mol%) and N-methylmorpholine N-oxide (1.0 equiv) as co-oxidant (acetone, t-BuOH, H2O, r.t.) gave ii (34%) and iii (12%) (Figure [4] ) along with recovered starting material (36%).
21tert-Butyldimethylsilyl ether 27 was prepared to enable chromatographic purification of the intermediate sulfoxides, which were hardly soluble in appropriate organic solvents when derived from 26.
22(1 RS ,9 RS ,11 RS ,12 RS )-11,12-Dihydroxy-9-methyl-4-methylene-2,5-dioxatricyclo-[7.3.1.0 [3] [7] ]tridec-3(7)-ene-6,8-dione(5). Colorless crystals (MeCN); mp > 370 °C; IR (KBr): 3460, 2924, 1786, 1588 cm-1; MS (CI, CH5 +): m/z (%) = 267(100) [M + H+]; 1H NMR (d 6-DMSO): δ = 1.07 [s, 3 H, CH3-(C-9)], 1.58 (dd, J = 12.4/3.7 Hz, 1 H, 10-Heq), 1.72 (t, J = 12.4 Hz, 1 H, 10-Hax), 1.99 (dd, J = 16.4/4.5 Hz, 1 H, 13-H), 2.31 (d, J = 16.4 Hz, 1 H, 13-H), 3.39 (d, J = 12.4 Hz, 1 H, 11-H), 3.89 (m, 1 H, 12-H), 4.80 (d, J = 5.6 Hz, 1 H, OH), 4.98 (m, 1 H, 1-H), 5.39 [d, J = 2.8 Hz, 1 H, (C-4) =CH2], 5.41 [d, J = 2.8 Hz, 1 H, (C-4) =CH2], 5.43 (d, J = 4.5 Hz, 1 H, OH); 13C NMR (d 6-DMSO): δ = 26.3 [CH3-(C-9)], 28.4 (C-13), 39.2 (C-10), 47.7 (C-9), 64.7 (C-11), 72.3 (C-12), 84.2 (C-1), 96.7 [(C-4) =CH2], 101.5 (C-7), 147.6 (C-4), 163.4 (C-6), 165.6 (C-3), 198.3 (C-8); HRMS: m/z Calcd for C13H14O6 (M+): 266.0790; Found: 266.0762.
 
    