References
<A NAME="RG15103ST-1">1</A> Transition metal catalyzed reactions in organic synthesis, part 4. For part 3,
see:
Kalogerakis A.
Groth U.
Org. Lett.
2003,
6:
843
<A NAME="RG15103ST-2">2</A>
Oka M.
Kamei H.
Hamagishi Y.
Omita K.
Miyaki T.
Konish M.
Oki T.
J. Antibiot.
1990,
43:
967
<A NAME="RG15103ST-3A">3a</A>
Rohr J.
Thiericke R.
Nat. Prod. Rep.
1992,
103
<A NAME="RG15103ST-3B">3b</A>
Krohn K.
Rohr J.
Top. Curr. Chem.
1997,
188:
127
<A NAME="RG15103ST-4A">4a</A>
Uemura M.
Take K.
Minami T.
Hayashi Y.
Tetrahedron
1985,
41:
5771
<A NAME="RG15103ST-4B">4b</A>
Kraus GA.
Wu Y.
Tetrahedron Lett.
1991,
32:
3803
<A NAME="RG15103ST-4C">4c</A>
Krohn K.
Khanbabaee K.
Jones PG.
Chrapowski A.
Liebigs Ann. Chem.
1994,
471
<A NAME="RG15103ST-4D">4d</A>
Krohn K.
Khanbabaee K.
Liebigs Ann. Chem.
1994,
1109
<A NAME="RG15103ST-4E">4e</A>
Krohn K.
Mcheel J.
Zukowski M.
Tetrahedron
2000,
56:
4753
<A NAME="RG15103ST-4F">4f</A>
Krohn K.
Böker N.
Flörke U.
Freund C.
J. Org. Chem.
1997,
62:
2350
<A NAME="RG15103ST-4G">4g</A>
Katsuura K.
Snieckus V.
Can. J. Chem.
1987,
65:
124
<A NAME="RG15103ST-4H">4h</A>
Guingant A.
Barreto M.
Tetrahedron Lett.
1987,
28:
3107
<A NAME="RG15103ST-4I">4i</A>
Patil ML.
Borate HB.
Ponde DE.
Bhawal BM.
Deshpande VH.
Tetrahedron Lett.
1999,
40:
4437
<A NAME="RG15103ST-4J">4j</A>
Mal D.
Roy HN.
J. Chem. Soc., Perkin Trans 1
1999,
3167
<A NAME="RG15103ST-4K">4k</A>
Rozek T.
Bowie JH.
Pyke SM.
Skelton BW.
White AH.
J. Chem. Soc., Perkin Trans 1
2001,
1826
<A NAME="RG15103ST-5A">5a</A>
Larsen DS.
O’Shea MD.
Brooker S.
Chem. Commun.
1996,
203
<A NAME="RG15103ST-5B">5b</A>
Caygill GB.
Larsen DS.
Brooker S.
J. Org. Chem.
2001,
66:
7427
<A NAME="RG15103ST-5C">5c</A>
Carreño MC.
Ribagorda M.
Somoza A.
Urbano A.
Angew. Chem., Int. Ed.
2002,
41:
2755
<A NAME="RG15103ST-5D">5d</A>
Boyd VA.
Sulikowski GA.
J. Am. Chem. Soc.
1995,
117:
8472
<A NAME="RG15103ST-6A">6a</A>
Carreño MC.
Urbano A.
Vitta CD.
Chem. Commun.
1999,
817
<A NAME="RG15103ST-6B">6b</A>
Carreño MC.
Urbano A.
Vitta CD.
J. Org. Chem.
1998,
63:
8320
<A NAME="RG15103ST-6C">6c</A>
Hecker SJ.
Heathcock CH.
J. Org. Chem.
1985,
50:
5159
<A NAME="RG15103ST-7A">7a</A>
Vollhardt KPC.
Acc. Chem. Res.
1977,
10:
1
<A NAME="RG15103ST-7B">7b</A>
Vollhardt KPC.
Angew. Chem., Int. Ed. Engl.
1984,
23:
539
<A NAME="RG15103ST-7C">7c</A>
Lecker SH.
Nguyen NH.
Vollhardt KPC.
J. Am. Chem. Soc.
1986,
108:
856
<A NAME="RG15103ST-7D">7d</A>
Dosa PI.
Whitener GD.
Vollhardt KPC.
Bond AD.
Teat SJ.
Org. Lett.
2002,
4:
2075
<A NAME="RG15103ST-8A">8a</A>
Purchased from Fluka.
<A NAME="RG15103ST-8B">8b</A>
Tietze LF.
Kiedrovski GV.
Fahlbusch K.-G.
Voss E.
Org. Synth.
1993,
8:
353
<A NAME="RG15103ST-8C">8c</A>
Chapuis C.
Barthe M.
Laumer J.-Y.
Helv. Chim. Acta
2001,
84:
230
<A NAME="RG15103ST-9">9</A>
Corey EJ.
Fuchs PL.
Tetrahedron Lett.
1972,
36:
3769
<A NAME="RG15103ST-10">10</A>
Hosokawa S.
Isobe M.
J. Org. Chem.
1999,
64:
37
<A NAME="RG15103ST-11">11</A>
Herold P.
Helv. Chim. Act.
1988,
71:
354
<A NAME="RG15103ST-12">12</A>
Corey EJ.
Cho H.
Ruecker C.
Hua DH.
Tetrahedron Lett.
1981,
36:
3455
<A NAME="RG15103ST-13">13</A>
Experimental Procedure: A solution of CpCo(CO)2 (25.00 mg, 0.142 mmol, 10 mol%) in 2 mL toluene was added via canula to a solution
of triyne 9 (0.58 g, 1.42 mmol) in 120 mL toluene and the mixture was heated to reflux and irradiated
with a tungsten-lamp (osram vitalux 300 W) for 4 h. The organic phase was then concentrated
in vacuo. Chromatography on silica gel (Et2O-petroleum ether, 1:200) provided anthracene 10 (0.29 g, 1.051 mmol, 74% yield) as a white solid.
Mp 136-138 °C. [α]D
22 +86.43 (c 0.14, CHCl3). Rf = 0.31 (Et2O-petroleum ether, 1:100). IR (CCl4): 2935-2810 [C-H (OCH3)] cm-1. 1H NMR (600 MHz, CDCl3): δ = 1.16 (d, 3
J = 6.6 Hz, 3 H, 3-CH3), 1.58 (m, 1 H, H-2), 2.00 (m, 1 H, H-3), 2.14 (m, 1 H, H-2), 2.60 (dd, 2
J = 16.5 Hz, 3
J =10.5 Hz, 1 H, H-4), 2.95 (dd, 2
J = 16.5 Hz, 3
J = 3.9 Hz, 1 H, H-4), 3.14 (m, 1 H, H-1), 3.40 (d, 2
J = 16.5 Hz, 1 H, H-1), 4.09 (s, 3 H, OCH3), 6.73 (d, J
o = 8.0 Hz, 1 H, H-9), 7.18 (d, J
o = 8.6 Hz, 1 H, H-5), 7.37 (t, J
o = 8.0 Hz, 1 H, H-10), 7.62 (d, J
o = 8.0 Hz, 1 H, H-11), 7.82 (d, J
o = 8.6 Hz, 1 H, H-6), 8.44 (s, 1 H, H-12), 8.78 (s, 1 H, H-7). 13C NMR (100 MHz, CDCl3): δ = 21.79 (3-CH3), 25.83 (C-1), 28.88 (C-3), 31.35 (C-2), 39.14 (C-4), 55.45 (OCH3), 101.34 (C-9), 120.75 (C-12), 120.83 (C-11), 121.35 (C-7), 125.06 (C-10), 126.58
(C-6), 128.05 (C-5), 124.09, 130.34, 131.42, 132.64, 133.57, 155.38 (Cquart-arom.). EI-MS (70 eV): m/z = 276 (100%, M+), 261 (15%, M+ - CH3), 246 (7%, 261 - CH3), 233 (77%, 261 - C2H4). HRMS: calcd 276.1514 for C20H20O, found 276.1508.
<A NAME="RG15103ST-14A">14a</A>
Jonas K.
Deffense E.
Habermann D.
Angew. Chem., Int. Ed. Engl.
1983,
22:
716
<A NAME="RG15103ST-14B">14b</A>
Cammack JK.
Jalisatgi S.
Matzger AJ.
Négron A.
Vollhardt KPC.
J. Org. Chem.
1996,
61:
4798
<A NAME="RG15103ST-15A">15a</A>
Tius MA.
Galeno JG.
Gu X.
Zaid JH.
J. Am. Chem. Soc.
1991,
113:
5775
<A NAME="RG15103ST-15B">15b</A>
Firouzabadi H.
Vessel B.
Naderi M.
Tetrahedron Lett.
1982,
23:
1847
<A NAME="RG15103ST-16">16</A>
Experimental Procedure: Anthraquinone 11 (60.00 mg, 0.195 mmol) was dissolved in 5 mL CHCl3 and irradiated with a tungsten-lamp (osram vitalux 300 W) over 18 h. The organic
layer was then removed in vacuo. Chromatography on silica gel (petroleum ether-Et2O, 1:2) provided (+)-rubiginone B2 12 (42.00 mg, 0.131 mmol, 67% yield) as a yellow solid.
Mp > 262 °C (dec.). [α]D
25 +71.64 (c 0.275, CHCl3, recrystallized from petroleum ether-CHCl3, 2:1). Rf = 0.14 (Et2O-petroleum ether, 1:4). IR (CCl4): 1673, 1677, 1708 (C=O) cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.20 (d, 3
J = 6.4 Hz, 3 H, 3-CH3), 2.45 (m, 1 H, H-3), 2.55 (dd, 2
J = 15.6 Hz, 3
J = 11.0 Hz, 1 H, H-2), 2.67 (dd, 2
J = 16.4 Hz, 3
J = 11.0 Hz, 1 H, H-2), 2.98 (m, 2 H, H-1 and H-4), 4.04 (s, 3 H, OCH3), 7.24 (d, J
o = 8.2 Hz, 1 H, H-9), 7.45 (d, J
o = 8.0 Hz, 1 H, H-5), 7.65 (t, J
o = 8.2 Hz, J
o = 7.8 Hz, 1 H, H-10), 7.71 (d, J
o = 7.8 Hz, 1 H, H-11), 8.20 (d, J
o = 8.0 Hz, 1 H, H-6). 13C NMR (150 MHz, CDCl3): δ = 21.43 (3-CH3), 30.82 (C-3), 38.33 (C-4), 47.55 (C-2), 56.50 (OCH3), 117.15 (C-9), 119.68 (C-11), 129.60 (C-6), 132.99 (C-5), 135.34 (C-10), 120.56,
134.98, 135.07, 137.67, 149.13, 159.81 (Cquart-arom.), 181.59, 184.51, 198.89 (C=O). EI-MS (70 eV): m/z = 320 (100%, M+), 305 (15%, M+ - CH3), 292 (35%, M+- CO), 291 (15%, M+ - HCO), 261 (27%, 292 - OCH3), 233 (24%, 261 - CO).