References
<A NAME="RS01804ST-1">1</A>
Djerassi C.
Scholz CR.
J. Am. Chem. Soc.
1948,
70:
417
<A NAME="RS01804ST-2">2</A>
Arcus CL.
Strauss HE.
J. Chem. Soc.
1952,
2669
<A NAME="RS01804ST-3A">3a</A>
Banks RE.
Hasszeldine RN.
Latham JV.
Young IM.
J. Chem. Soc.
1965,
594
<A NAME="RS01804ST-3B">3b</A>
Reeves WP.
Lu CV.
Schulmeier B.
Jonas L.
Hatlevik O.
Synth. Commun.
1998,
28:
499
<A NAME="RS01804ST-4">4</A>
Ali SI.
Nikalje MD.
Sudalai A.
Org. Lett.
1999,
1:
705
<A NAME="RS01804ST-5A">5a</A>
Tanaka K.
Shiraishi R.
Toda F.
J. Chem. Soc., Perkin Trans. 1
1999,
3069 . Apart from PHP, ammonium tribromides are widely used brominating agents, see
for example:
<A NAME="RS01804ST-5B">5b</A>
Buckles RE.
Popov AI.
Zelezny WF.
Smith RJ.
J. Am. Chem. Soc.
1951,
73:
4525
<A NAME="RS01804ST-5C">5c</A>
Avramoff M.
Weiss J.
Schaechter OJ.
J. Org. Chem.
1963,
28:
3256
<A NAME="RS01804ST-5D">5d</A>
Kajigaeshi S.
Moriwaki M.
Tanaka T.
Fujisaki S.
Kakinami T.
Okamoto T.
J. Chem. Soc., Perkin Trans. 1
1990,
897
<A NAME="RS01804ST-5E">5e</A>
Muathen HA.
J. Org. Chem.
1992,
57:
2740
<A NAME="RS01804ST-6">6</A>
Chiappe C.
Capraro D.
Conte V.
Pieraccini D.
Org. Lett.
2001,
3:
1061
<A NAME="RS01804ST-7A">7a</A>
Bates ED.
Mayton RD.
Ntai I.
Davis JH.
J. Am. Chem. Soc.
2002,
124:
926
<A NAME="RS01804ST-7B">7b</A>
Visser AE.
Swatloski RP.
Reichert WM.
Mayton R.
Sheff S.
Wierzbicki A.
Davis JH.
Rogers RD.
Chem. Commun.
2001,
135
<A NAME="RS01804ST-7C">7c</A>
Bartolini O.
Bottai M.
Chiappe C.
Conte V.
Pieraccini D.
Green Chem.
2002,
4:
621
<A NAME="RS01804ST-8A">8a</A> For a synthesis of 1, see:
Zhu Z.
Ching C.
Carpenter K.
Xu R.
Selvaratnam S.
Hosmane NS.
Maguire JA.
Appl. Organomet. Chem.
2003,
17:
346
<A NAME="RS01804ST-8B">8b</A>
Bromide 1 is a white hygroscopic solid that melts in humid air affording an ‘RTIL’ although,
strictly speaking, it is not.
<A NAME="RS01804ST-9">9</A>
Pentylpyridinium Tribromide (2). Bromine (64.48 g, 404.7 mmol) was added over 30 min to solid crushed pentylpyridinium
bromide (1, 93.07 g, 404.4 mmol) under mechanical stirring and cooling in a water bath affording
a deep red liquid. After stirring for 2 h the liquid was left in vacuo overnight.
Yield: 156 g (99%); mp 0 °C; κ = 8.09 mS cm-1; d = 1.79 g cm-3; η35-500 0.038 Pa s (all at 25° C). 1H NMR (CD2Cl2): δ = 0.80-1.00 (m, 3 H), 1.30-1.55 (m, 4 H), 2.00-2.15 (m, 2 H), 4.60-4.75 (m, 2
H), 8.10-8.20 (m, 2 H), 8.50-8.65 (m, 1 H), 8.80-8.95 (m, 2 H). 13C NMR (400.14 MHz, CD2Cl2): δ = 13.62 (s), 22.12 (s), 28.20 (s), 31.33 (s), 63.14 (s), 129.08 (s), 144.42 (s),
145.86 (s). Anal. Calcd for C10H16NBr3: C, 30.80; H, 4.14; N, 3.59. Found: C, 30.95; H, 4.11; N, 3.71.
<A NAME="RS01804ST-10A">10a</A>
Barnes HA.
Hutton JF.
Walters K.
An Introduction to Rheology
Elsevier;
Amsterdam, Oxford, New York, Tokyo:
1989.
<A NAME="RS01804ST-10B">10b</A>
For the sake of comparison, the viscosities of bicycle oil and olive oil at r.t. are
approximately 10-2 Pa s and 10-1 Pa s, respectively.
Similar examples that demonstrate the complete elimination of residual vapor pressure
of strong acids in functional RTIL are:
<A NAME="RS01804ST-11A">11a</A>
Cole AC.
Jensen JL.
Ntai I.
Tran KLT.
Weaver KJ.
Forbes DC.
Davis JH.
J. Am. Chem. Soc.
2002,
124:
5962
<A NAME="RS01804ST-11B">11b</A>
Susan MABH.
Noda A.
Mitsushima S.
Watanabe M.
Chem. Commun.
2003,
938
Representative Procedures
<A NAME="RS01804ST-12A">12a</A>
p
-Bromophenol: To crystalline phenol (1.03 g, 10.9 mmol) was added dropwise 2 (4.04 g, 10.3 mmol) over 20 min. The first few drops of 2 caused the phenol crystals to melt and to form a limpid reaction solution. The resulting
orange syrup was left stirring for another 20 min during which time the color changed
to yellow. Extraction with Et2O (4 × 20 mL) yielded a colorless oil (1.66 g, 93%) and spectroscopic data corresponded
to pure p-bromophenol. The yellowish ionic liquid phase was dried under high vacuum, identified
as pure 1 (1 is liquid when moist)
[8]
by 1H NMR (1.99 g, 8.6 mmol), and reacted with 1 equiv of Br2 to regenerate 2. Note: We do not recommend the use of recycled 2 from monobrominations that could contain traces of HBr in acid-sensitive reactions.
<A NAME="RS01804ST-12B">12b</A>
1,2-Dibromocyclohexane: Tribromide 2 (5.00 g, 12.8 mmol) was added dropwise to neat cyclohexene (1.05 g, 12.8 mmol) over
25 min yielding a viscous orange mixture which was left stirring for 2 h. To the resulting
yellow biphasic system (heavy phase: 1,2-dibromocyclohexane) was added water (10 mL)
for easier phase separation. The organic product was dried with a small amount of
Na2SO4, filtered and left for 5 min under high vacuum to remove traces of bromine leaving
a colorless liquid (2.60 g, 84%). Spectroscopic data corresponded to a pure sample
of 1,2-dibromocyclohexane.
For examples, see:
<A NAME="RS01804ST-13A">13a</A>
Smith MB.
Guo LC.
Okey S.
Stenzel J.
Yanella J.
LaChapelle E.
Org. Lett.
2002,
4:
2321
<A NAME="RS01804ST-13B">13b</A>
Bora U.
Bose G.
Chaudhuri MK.
Dhar SS.
Gopinath R.
Khan AT.
Patel BK.
Org. Lett.
2000,
2:
247