Zusammenfassung
Die klassische Vorgehensweise bei der Analyse der Körperzusammensetzung ist die Einteilung
des Körpers in Kompartimente (C). Das einfachste Modell unterscheidet 2 Kompartimente,
die Fettmasse (FM) und die fettfreie Masse (FFM) des Körpers. Die FM entspricht dabei
den mit Äther extrahierbaren Lipiden während die FFM die Differenz dieser Lipide zum
Körpergewicht ausmacht. 3- und 4C-Modelle berücksichtigen zusätzlich den Wasser- und
Mineralanteil der FFM. Sie reduzieren damit die Annahmen, die dem 2C-Modell zugrunde
liegen und ermöglichen eine genauere Bestimmung der Körperfettmasse. Voraussetzung
für die Erstellung des 4C-Modells ist die Kombination verschiedener Methoden wie Densitometrie,
Dual-Energy-X-ray-Absorptiometrie und Deuteriumdilution. Der hohe technische und finanzielle Aufwand macht das 4C-Modell
für den Einsatz im klinischen Alltag ungeeignet und behält es wissenschaftlichen Studien
vor. Auch das 4C-Modell hat Grenzen im Hinblick auf die Beurteilung funktioneller
Aspekte wie z. B. des Stoffwechsels. FM und FFM sind historisch begründete künstliche
Kompartimente, deren metabolische Bedeutung begrenzt ist. Neuere Methoden der Körperzusammensetzung
erfassen Organ- und Gewebemassen sowie die Gewebezusammensetzung. Diese funktionellen
und qualitativen Analysen erlauben die Interpretation von Stoffwechselraten und die
Beurteilung des gesundheitlichen Risikos (z. B. Insulinresistenz). Sie sind wegweisend
für zukünftige Studien.
Abstract
A conventional approach of body composition analysis are the classical compartment
(C) models. A 2C-model differentiates fat mass (FM, corresponding to ether extractable
lipids) and fat-free mass (FFM). 3- and 4C-models also consider water and mineral
content of FFM. These models increase the accuracy of FM calculation by reducing the
number of underlying assumptions of the 2C-model (i. e. a constant hydration and mineral
content of FFM). However, creating a 4C-model requires a combination of different
methods like densitometry, dual energy-X-ray absorptiometry and isotope dilution and
these sophisticated techniques are both expensive and require expertise. This leaves
a 4C-model prior to scientific studies. Even the most accurate estimation of body
composition by a 4C-model has limitations with respect to assessment of body functions
e. g. metabolism. More recent methods assess detailed organ and tissue masses as well
as tissue composition. These methods overcome the functional and qualitative drawbacks
of the traditional and artificial compartments FM and FFM. Organ and tissue masses
contribute to interindividual variance in metabolic rate. Visceral adipose tissue
and intracellular lipids in muscle and liver are closely associated to metabolic risk
(e. g. insulin resistance). These new methods of body composition research are promising
innovations to be applied in future studies.
Schlüsselwörter
Kompartimentmodelle - Fettmasse - fettfreie Masse - Organmassen - viszerales Fettgewebe
- intrazelluläre Lipide - Ruheenergieverbrauch - gesundheitliches Risiko
Key words
Compartment models - fat mass - fat-free mass - organ masses - visceral adipose tissue
- intracellular lipids - resting energy expenditure - metabolic risk
Literatur
- 1 Snyder W S, Cool M J, Nasset E J, Karhausen L R, Howells G P, Tripton I CH. Report
on the Task Group of Reference Man. International Commission on Radiological Protection
No 23. Oxford; Pergamon Press 1975
- 2
Ellis K J.
Human Body Composition: In vivo methods.
Physiol Reviews.
2000;
80
649-680
- 3 Heymsfield S B, Baumgartner R N, Allison D B, Shen W, Wang Z M, Ross R.
Evaluation of total and regional adiposity. In: Bray GA, Bouchard C (eds) Handbook of Obesity. Ethiology and Pathophysiology,
2nd ed. New York; Marcel Decker 2004: 33-80
- 4
Pierson Jr R N, Wang J, Thornton J C.
Body composition comes of age: a modest proposal for the next generation - The new
reference man. In: In vivo body composition studies.
Ann N Y Acad Sci.
2000;
904
1-11
- 5
Fields D A, Goran M I, McCrory M A.
Body-composition assessment via air-displacement plethysmography in adults and children:
a review.
Am J Clin Nutr.
2002;
75 (3)
453-467
- 6
Bosy-Westphal A, Mast M, Eichhorn C, Becker C, Kutzner D, Heller M, Müller M J.
Validation of air-displacement plethysmography for estimation of body fat mass in
healthy elderly subjects.
Eur J Nutr.
2003;
42
207-212
- 7
Bosy-Westphal A, Eichhorn C, Kutzner D, Illner K, Heller M, Müller M J.
The age-related decline in resting energy expenditure in humans is due to the loss
of fat-free mass and to alterations in its metabolically active components.
J Nutr.
2003;
133
2356-2362
- 8 Siri W I. Body composition from fluid spaces and density: analysis of methods. In:
Techniques for measuring body composition. Washington, DC; National Academy of Sciences
1961: 223-244
- 9
Jennings G, Bluck L, Wright A, Elia M.
The use of infrared spectrofotometry for measuring body water spaces.
Clin Chem.
1999;
45 (7)
1077-1081
- 10
Fuller N J, Jebb S A, Laskey M A, Coward W A, Elia M.
Four-component model for the assessment of body composition in humans: comparison
with alternative methods, and evaluation of the density and hydration of fat-free
mass.
Clin Sci (Lond).
1992;
82 (6)
687-693
- 11
Müller M J, Bosy-Westphal A, Claus S, Kreymann G, Lührmann P, Neuhäuser-Berthold M,
Noack R, Pirke K M, Platte P, Selberg O, Steininger J.
WHO equations have shortcomings to predict resting energy expenditure in individuals
from a modern affluent population-comparison with an actual German database of resting
energy expenditure.
Am J Clin Nutr.
2004;
80 (5)
1379-1390
- 12 Müller M J, Bosy-Westphal A, Geisler C, Onur S. Physiological vs. pathological
changes of nutritional status over lifetime. In: Nestle Nutrition Workshop series,
Vol 10. Basel; Karger Verlag 2004, in press
- 13
Müller M J, Bosy-Westphal A, Kutzner D, Heller M.
Metabolically active components of fat-free mass and resting energy expenditure in
humans: recent lessons from imaging technologies.
Obesity Rev.
2002;
3
113-122
- 14 Duck F A. Physical Properties of Tissue. New York; Academic 1990
- 15
Hayes M, Chustek M, Wang Z M, Gallagher D, Heshka S, Spungen A, Baumann W, Heymsfield S B.
DXA: Potential for creating a metabolic map of organ-tissue resting energy expenditure
components.
Obes Res.
2002;
10
969-977
- 16
Kim J, Wang Z, Heymsfield S B, Baumgartner R N, Gallagher D.
Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry
method.
Am J Clin Nutr.
2002;
76
378-383
- 17 Elia M.
Organ and tissue contribution to metabolic rate. In: Kinney JM, Tucker HN (eds) Energy Metabolism: Tissue Determinants and Cellular
Corollaries. New York; Raven 1992: 19-59
- 18
Illner K, Brinkmann G, Heller M, Bosy-Westphal A, Müller M J.
Metabolically active components of fat free mass and resting energy expenditure in
nonobese adults.
Am J Physiol.
2000;
278
E308-E315
- 19
Bosy-Westphal A, Reinecke U, Schlörke T, Illner K, Kutzner D, Heller M, Müller M J.
Modeling of resting energy expenditure from organ-tissue masses in underweight and
obese adults.
Int J Obes.
2003;
27, Suppl 1
S44
- 20
WHO .
Obesity: preventing and managing the global epidemic.
World Health Organ Tech Rep Ser.
2000;
894 i-xii
1-253
- 21
Matthews D R, Hosker J P, Rudenski A S, Naylor B A, Treacher D F, Turner R C.
Homeostasis model assessment: insulin resistance and beta-cell function from fasting
plasma glucose and insulin concentrations in man.
Diabetologia.
1985;
28
412-419
- 22
Geisler C, Onur S, Bosy-Westphal A, Bührens F, Wolf A, Krawczak M, Müller M J.
A Family Path study as part of the Kiel Obesity prevention study Kiel (KOPS).
Int J Obes.
2004;
28, Suppl 1
S106
- 23
Unger R H.
Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the
metabolic syndrome.
Endocrinology.
2003;
144 (12)
5159-5165
Dr. Anja Bosy-Westphal
Institut für Humanernährung und Lebensmittelkunde · Referenzzentrum für Körperzusammensetzung
· Christian-Albrechts-Universität zu Kiel
Düsternbrooker Weg 17
24105 Kiel
Email: abosyw@nutrfoodsc.uni-kiel.de