Subscribe to RSS
DOI: 10.1055/s-2005-868493
Tishchenko Reaction Using an Iridium-Ligand Bifunctional Catalyst
Publication History
Publication Date:
25 April 2005 (online)

Abstract
Tishchenko reaction of aldehydes in the presence of an amino alcohol-based Ir bifunctional catalyst was developed. The reaction proceeds with 1 mol% of the catalyst and 20-30 mol% of K2CO3 in acetonitrile at room temperature to give the corresponding dimeric esters in good yield.
Key words
aldehydes - esters - hydrogen transfer - iridium catalyst - Tishchenko reaction
- 1a 
             
            Tischtschenko W. Chem. Zentralbl. 1906, 77: 1309
- 1b 
             
            Larock RC. Comprehensive Organic Transformations VCH Publishers, Inc.; New York: 1989. p.840
- 1c For a recent review:  
            Törmäkangas OP.Koskinen AMP. Recent Res. Dev. Org. Chem. 2001, 5: 225
- 2 For recent examples of Tishchenko-related reactions, see:  
            Gnanadesikan V.Horiuchi Y.Ohshima T.Shibasaki M. J. Am. Chem. Soc. 2004, 126: 7782 ; and references cited therein
- 3 
             
            Stapp PR. J. Org. Chem. 1973, 38: 1433
- 4 
             
            Yamashita M.Watanabe Y.Mitsudo T.-a.Takegami Y. Bull. Chem. Soc. Jpn. 1976, 49: 3597
- 5a 
             
            Ito T.Horino H.Koshiro Y.Yamamoto A. Bull. Chem. Soc. Jpn. 1982, 55: 504
- 5b 
             
            Menashe N.Shvo Y. Organometallics 1991, 10: 3885
- 6 
             
            Morita K.Nishiyama Y.Ishii Y. Organometallics 1993, 12: 3748
- 7a 
             
            Onozawa S.-y.Sakakura T.Tanaka M.Shiro M. Tetrahedron 1996, 52: 4291
- 7b 
             
            Berberich H.Roesky PW. Angew. Chem. Int. Ed. 1998, 37: 1569
- 7c 
             
            Bürgstein MR.Berberich H.Roesky PW. Chem.-Eur. J. 2001, 7: 3078
- 8a 
             
            Bernard KA.Atwood JD. Organometallics 1988, 7: 235
- 8b 
             
            Bernard KA.Atwood JD. Organometallics 1989, 8: 795
- 9 
             
            Barrio P.Esteruelas MA.Oñate E. Organometallics 2004, 23: 1340
- 10a 
             
            Ooi T.Miura T.Takaya K.Maruoka K. Tetrahedron Lett. 1999, 40: 7695
- 10b 
             
            Simpura I.Nevalainen V. Tetrahedron 2001, 57: 9867
- 10c 
             
            Ooi T.Ohmatsu K.Sasaki K.Miura T.Maruoka K. Tetrahedron Lett. 2003, 44: 3191
- 11a 
             
            Suzuki T.Morita K.Tsuchida M.Hiroi K. Org. Lett. 2002, 4: 2361
- 11b 
             
            Suzuki T.Morita K.Matsuo Y.Hiroi K. Tetrahedron Lett. 2003, 44: 2003
- 11c 
             
            Suzuki T.Morita K.Tsuchida M.Hiroi K. J. Org. Chem. 2003, 68: 1601
- For a related synthesis of dimeric esters using oxidative dimerization of primary alcohol, see:
- 11d 
             
            Suzuki T.Matsuo T.Watanabe K.Katoh T. Synlett 2005, in press
- Recent examples of hydrogen transfer reaction using Cp*Ir complexes, see:
- 12a 
             
            Mashima K.Abe T.Tani K. Chem. Lett. 1998, 1199
- 12b 
             
            Murata K.Ikariya T.Noyori R. J. Org. Chem. 1999, 64: 2186
- 12c 
             
            Ogo S.Makihara N.Watanabe Y. Organometallics 1999, 18: 5470
- 12d 
             
            Ogo S.Makihara N.Kaneko Y.Watanabe Y. Organometallics 2001, 20: 4903
- 12e 
             
            Fujita K.Furukawa S.Yamaguchi R. J. Organomet. Chem. 2002, 649: 289
- 12f 
             
            Fujita K.Yamamoto K.Yamaguchi R. Org. Lett. 2002, 4: 2691
- 12g 
             
            Abura T.Ogo S.Watanabe Y.Fukuzumi S. J. Am. Chem. Soc. 2003, 125: 4149
- 12h 
             
            Fujita K.Li Z.Ozeki N.Yamaguchi R. Tetrahedron Lett. 2003, 44: 2687
- 12i 
             
            Fujita K.Kitatsuji C.Furukawa S.Yamaguchi R. Tetrahedron Lett. 2004, 45: 3215
- 12j 
             
            Fujita K.Fujii T.Yamaguchi R. Org. Lett. 2004, 6: 3525
- 12k 
             
            Hanasaka F.Fujita K.Yamaguchi R. Organometallics 2004, 23: 1490
- 15 Although the role of the K2CO3 is not clear at present, it might increase the nucleophilicity of the reduced alcohol
            5 to the corresponding aldehyde for the formation of the hemiacetal 6. For the mechanistic study of acid- and base-catalyzed formation of the hemiacetal,
            see:  
            Sorensen PE.Jencks WP. J. Am. Chem. Soc. 1987, 109: 4675
References
Although Cs2CO3 also showed similar reactivity (ca. 90%), the use of other bases, such as Na2CO3, KHCO3, KOAc, and Et3N resulted in lower reactivity (<10% yield). t-BuOK afforded the aldol condensation product without forming the dimeric ester.
14Although TONs were not optimized at the moment, they were roughly calculated to be in range between 43 and 49 for most substrates.
16In a control experiment, no reaction took place without Ir complex (in the presence of K2CO3).
17In most cases, a small amount of alcohol remained even after the aldehyde was completely consumed.
 
    