References and Notes
<A NAME="RW32405ST-1">1</A>
Greene TWP.
Wuts GM.
Protective Groups In Organic Synthesis
Wiley;
New York:
1998.
p.76
<A NAME="RW32405ST-2">2</A>
McCloskey CM.
Adv. Carbohydr. Chem.
1957,
12:
137
<A NAME="RW32405ST-3">3</A>
Reese CB. In
Protective Groups in Organic Chemistry
McOmie JF.
Plenum Press;
London:
1973.
<A NAME="RW32405ST-4">4</A>
Fletcher HG.
Methods Carbohydr. Chem.
1963,
166
<A NAME="RW32405ST-5A">5a</A>
Czernecki S.
Grorgoulis C.
Provelenghiou C.
Tetrahedron Lett.
1981,
3535
<A NAME="RW32405ST-5B">5b</A>
Kanai K.
Sakamoto I.
Ogawa S.
Suami T.
Bull. Chem. Soc. Jpn.
1987,
60:
1529
<A NAME="RW32405ST-6">6</A>
Hijfte LV.
Little RD.
J. Org. Chem.
1985,
50:
3940
<A NAME="RW32405ST-7">7</A>
Wessel HP.
Lersen T.
Bundle DR.
J. Chem. Soc., Perkin Trans. 1
1985,
2247
<A NAME="RW32405ST-8">8</A>
Liotta LJ.
Ganem B.
Isr. J. Chem.
1991,
31:
215
<A NAME="RW32405ST-9A">9a</A>
Horne DA.
Jordan A.
Tetrahedron Lett.
1978,
1357
<A NAME="RW32405ST-9B">9b</A>
Garegg P.
Pure Appl. Chem.
1984,
56:
854
<A NAME="RW32405ST-10A">10a</A>
Bhattacharjee SS.
Gorin PAJ.
Can. J. Chem.
1969,
47:
1195
<A NAME="RW32405ST-10B">10b</A>
Gelas J.
Adv. Carbohydr. Chem.
1981,
39:
71
<A NAME="RW32405ST-10C">10c</A>
Lipták A.
Imre J.
Harangi J.
Nánási P.
Neszmelyi A.
Tetrahedron
1982,
38:
3721
<A NAME="RW32405ST-10D">10d</A>
Lipták A.
Jodál I.
Nánási P.
Carbohydr. Res.
1975,
44:
1
<A NAME="RW32405ST-10E">10e</A>
Fügedi P.
Lipták A.
Nánási P.
Carbohydr. Res.
1982,
104:
55
<A NAME="RW32405ST-10F">10f</A>
Mikami T.
Asano H.
Mitsunobu O.
Chem. Lett.
1987,
2033
<A NAME="RW32405ST-10G">10g</A>
Shie C.-R.
Tzeng Z.-H.
KulKarni SS.
Uang B.-J.
Hsu C.-Y.
Hung SC.
Angew. Chem. Int. Ed.
2005,
44:
1665
<A NAME="RW32405ST-11A">11a</A>
David S.
Hanessian S.
Tetrahedron
1985,
41:
643
<A NAME="RW32405ST-11B">11b</A>
Simas ABC.
Pais KC.
Dasilva AAT.
J. Org Chem.
2003,
68:
5426
<A NAME="RW32405ST-11C">11c</A>
Ek M.
Garegg PJ.
Hultberg H.
Oscarson S.
J. Carbohydr. Chem.
1983,
2:
305
<A NAME="RW32405ST-11D">11d</A>
Oikawa M.
Liu W.-C.
Nakai Y.
Koshida S.
Fukase K.
Kusumoto S.
Synlett
1996,
1179
<A NAME="RW32405ST-12">12</A>
Alais J.
Veyrieres A.
J. Chem. Soc., Perkin Trans. 1
1981,
377
<A NAME="RW32405ST-13A">13a</A>
Handa VK.
Piskorz CF.
Barlow JJ.
Matta KL.
Carbohydr. Res.
1979,
74:
C5
<A NAME="RW32405ST-13B">13b</A>
Hatakeyama S.
Mori H.
Kitano K.
Yamada H.
Nishizawa M.
Tetrahedron Lett.
1994,
35:
4367
<A NAME="RW32405ST-14">14</A>
The reaction conditions such as solvents, temperature, and ratio of reagents were
investigated. The optimized reaction conditions: molar ratio of NaH/BnBr/substrates
(1.3:1.3:1), DMF as solvent, reaction temperature (-15 °C to r.t.).
<A NAME="RW32405ST-15">15</A>
General Experimental Procedure.
To a solution of p-methylphenyl 2,3-dideoxy-2,3-diazido-1-thio-β-d-mannopyranoside (0.2 mmol) in anhyd DMF (4 mL) was added NaH (1.3 equiv) at -15 °C,
after stirring for 5 min BnBr (1.3 equiv) was added, then the mixture was warmed to
r.t. for 30 min. The reaction mixture was quenched with H2O and extracted with EtOAc. The organic layer was dried over Na2SO4 and concentrated. The residue was purified by column chromatography on silica gel
(PE-EtOAc, 12:1 to 6:1) to afford products 1a (71%), 1b (7%) and 1c (16%).
Compound 1a: 1H NMR (500 MHz, CDCl3): δ = 7.38-7.31 (m, 7 H), 7.13 (d, 2 H, J = 8.0 Hz), 4.85 (d, 1 H, J = 10.5 Hz, -CH2Ph), 4.77 (d, 1 H, J = 1.5 Hz, H-1), 4.66 (d, 1 H, J = 10.5 Hz, -CH2Ph), 4.09 (dd, 1 H, J = 1.5, 3.5 Hz, H-2), 3.90-3.86 (m, 2 H, H-4, H-6a), 3.76-3.74 (m, 2 H, H-3, H-6b),
3.32-3.29 (m, 1 H, H-5), 2.34 (s, 3 H, -SPhCH3), 2.07 (d, 1 H, J = 7.0 Hz, 6-OH). 13C NMR (125 MHz, CDCl3): δ = 138.53, 136.97, 132.29, 130.01, 129.49, 128.58, 128.35, 128.27, 86.95, 80.54,
75.28, 73.72, 66.75, 64.83, 61.70, 21.10. MS (ESI-TOF): m/z = 444 [M + NH4]+, 449 [M + Na]+. Anal. Calcd for C20H22N6O3S: C, 56.32; H, 5.20; N, 19.70. Found: C, 56.51; H, 5.38; N, 19.56.
Compound 1b: 1H NMR (500 MHz, CDCl3): δ = 7.39-7.30 (m, 7 H), 7.10 (d, J = 8.5 Hz, 2 H), 4.74 (d, J = 1.5 Hz, 1 H), 4.58 (dd, J = 8.5, 14.5 Hz, 2 H), 4.03-3.99 (m, 2 H), 3.81 (dd, J = 5.0, 10.0 Hz, 1 H), 3.75 (dd, J = 7.0, 10.0 Hz, 1 H), 3.63 (dd, J = 4.0, 10.0 Hz, 1 H), 3.45-3.41 (m, 1 H), 3.21 (d, J = 1.5 Hz, 1 H), 2.33 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 138.69, 137.33, 132.74, 130.17, 129.90, 128.86, 128.40, 128.19, 87.33, 78.02,
74.24, 71.34, 69.93, 66.50, 64.41, 21.38. MS (ESI-TOF): m/z = 444 [M + NH4]+, 449 [M + Na]+. Anal. Calcd for C20H22N6O3S: C, 56.32; H, 5.20; N, 19.70. Found: C, 56.11; H, 5.30; N, 19.51.
Compound 1c: 1H NMR (500 MHz, CDCl3): δ = 7.43-7.41 (m, 2 H), 7.35-7.30 (m, 7 H), 7.26-7.24 (m, 2 H), 7.07 (d, J = 8.5 Hz, 2 H), 4.79 (d, J = 12.0 Hz, 1 H), 4.73 (d, J = 1.5 Hz, 1 H), 4.60 (d, J = 12.0 Hz, 1 H), 4.58-4.54 (m, 2 H), 4.73 (dd, J = 1.0, 3.5 Hz, 1 H), 3.85 (t, J = 10.0 Hz, 1 H), 3.73-3.71 (m, 3 H), 3.43-3.39 (m, 1 H), 2.32 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 138.12, 137.98, 137.02, 132.18, 129.89, 129.82, 128.45, 128.30, 128.28, 128.10,
127.89, 127.60, 86.84, 80.37, 75.06, 74.20, 73.54, 68.64, 66.90, 64.79, 21.05. MS
(ESI): m/z = 516 [M]+. Anal. Calcd for C27H28N6O3S: C, 62.77; H, 5.46; N, 16.27. Found: C, 62.70; H, 5.40; N, 16.25.