Zusammenfassung
Über mehr als 100 Jahre galt die Multiple Sklerose (MS) als Prototyp einer entzündlich-demyelinisierenden
Erkrankung des Zentralnervensystems. Die letzten Jahre zeigten aber, dass neurodegenerative
Prozesse, die bereits frühzeitig im Krankheitsverlauf nachweisbar sind, eine ganz
entscheidende Rolle in der MS-Pathogenese spielen. Die Zerstörung neuronaler Strukturen
scheint hauptverantwortlich für die Entstehung eines permanenten neurologischen Defizits
zu sein, wobei die zur Neurodestruktion führenden Ursachen im Detail noch unklar sind.
Einerseits scheinen humorale Faktoren wie freie Radikale, Antikörper und Zytokine
eine wesentliche Rolle zu spielen, andererseits konnte auch eine Beteiligung zellulärer
Komponenten wie T-Zellen, Makrophagen und Mikrogliazellen nachgewiesen werden. Entscheidend
ist, dass die Schädigung neuronaler Strukturen offensichtlich schon sehr früh in der
MS-Pathogenese eine Rolle spielt und im Verlauf möglicherweise nicht allein Folge
der Neuroinflammation ist, sondern auch als eigenständiges Phänomen auftritt. Hieraus
ergibt sich die Notwendigkeit einer frühzeitigen und konsequenten neuroprotektiven/neuroregenerativen
Behandlung. Voraussetzung hierfür ist ein besseres Verständnis der neurodegenerativen
Mechanismen und die Entwicklung suffizienter neuroprotektiver Therapiestrategien.
Summary
For over a century multiple sclerosis was regarded as the prototypical inflammatory
demyelinating disease of the central nervous system. During recent years, however,
it has become increasingly evident, that neurodegenerative processes, which occur
early on in the disease pathogenesis, also play a major role. Neurodegeneration is
probably the underlying cause of permanent neurological impairments, although the
mechanisms through which such impairments develop are not yet clear. On the one hand,
soluble factors such as free radicals, antibodies and cytokines seem to play a crucial
role; on the other hand, cellular structures such as T cells, macrophages, and microglial
cells are also known to be involved. Importantly, neurodegeneration is not merely
the result of neuroinflammation but also exists as an independent phenomenon, and
this calls for early and targeted neuroprotective/ neuroregenerative treatment. A
prerequisite for such therapeutic strategies, however, is a better comprehension of
the mechanisms underlying neurodegeneration.
Key Words
multiple sclerosis - neurodegeneration - axonal loss - neuroprotection
Literatur
- 1
Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel PM, Infante-Duarte C,
Brocke S, Zipp F.
Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and
exerts neuroprotection in autoimmune encephalomyelitis.
J Immunol.
2004;
173
5794-5800
- 2
Aktas O, Smorodchenko A, Brocke S, Infante-Duarte C, Topphoff US, Vogt J, Prozorovski T,
Meier S, Osmanova V, Pohl E, Bechmann I, Nitsch R, Zipp F.
Neuronal Damage in Autoimmune Neuroinflammation Mediated by the Death Ligand TRAIL.
Neuron.
2005;
46
421-432
- 3
Confavreux C, Vukusic S, Moreau T, Adeleine P.
Relapses and progression of disability in multiple sclerosis.
N Engl J Med.
2000;
343
1430-1438
- 4
De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL.
Axonal damage correlates with disability in patients with relapsing-remitting multiple
sclerosis. Results of a longitudinal magnetic resonance spectroscopy study.
Brain.
1998;
121
1469-1477
- 5
Diestel A, Aktas O, Hackel D, Hake I, Meier S, Raine CS, Nitsch R, Zipp F, Ullrich O.
Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products
during neuroinflammation: a link between demyelination and neuronal damage.
J Exp Med.
2003;
198
1729-1740
- 6
Dörr J, Roth K, Zurbuchen U, Deisz R, Bechmann I, Lehmann TN, Meier S, Nitsch R, Zipp F.
Tumor-necrosis-factor-related apoptosis-inducing-ligand (TRAIL)-mediated death of
neurons in living human brain tissue is inhibited by flupirtine-maleate.
J Neuroimmunol.
2005;
167
204-209
- 7
Ferguson B, Matyszak MK, Esiri MM, Perry VH.
Axonal damage in acute multiple sclerosis lesions.
Brain.
1997;
120
393-399
- 8
Filippi M, Rovaris M, Iannucci G, Mennea S, Sormani MP, Comi G.
Whole brain volume changes in patients with progressive MS treated with cladribine.
Neurology.
2000;
55
1714-1718
- 9
Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, Schneider A, Zimmermann F,
McCulloch M, Nadon N, Nave KA.
Axonal swellings and degeneration in mice lacking the major proteolipid of myelin.
Science.
1998;
280
1610-1613
- 10
Hardmeier M, Wagenpfeil S, Freitag P, Fisher E, Rudick RA, Kooijmans-Coutinho M, Clanet M,
Radue EW, Kappos L.
Atrophy is detectable within a 3-month period in untreated patients with active relapsing
remitting multiple sclerosis.
Arch Neurol.
2003;
60
1736-1739
- 11
Inglese M, Van Waesberghe JH, Rovaris M, Beckmann K, Barkhof F, Hahn D, Kappos L,
Miller DH, Polman C, Pozzilli C, Thompson AJ, Yousry TA, Wagner K, Comi G, Filippi M.
The effect of interferon beta-1b on quantities derived from MT MRI in secondary progressive
MS.
Neurology.
2003;
60
853-860
- 12
Kurnellas MP, Nicot A, Shull GE, Elkabes S.
Plasma membrane calcium ATPase deficiency causes neuronal pathology in the spinal
cord: a potential mechanism for neurodegeneration in multiple sclerosis and spinal
cord injury.
FASEB J.
2005;
19
298-300
- 13
Nitsch R, Pohl EE, Smorodchenko A, Infante-Duarte C, Aktas O, Zipp F.
Direct impact of T cells on neurons revealed by two-photon microscopy in living brain
tissue.
J Neurosci.
2004;
24
2458-2464
- 14
Pitt D, Werner P, Raine CS.
Glutamate excitotoxicity in a model of multiple sclerosis.
Nat Med.
2000;
6
67-70
- 15
Trapp BD, Peterson J, Ransohoff RM, Rudick RA, Mörk S, Bo L.
Axonal transection in the lesions of multiple sclerosis.
N Engl J Med.
1998;
338
278-285
Korrespondenzadresse:
Prof. Dr. Frauke Zipp
Institut für Neuroimmunologie
Charité - Universitätsmedizin Berlin, Campus Mitte und Buch
10098 Berlin
Email: frauke.zipp@charite.de