Semin Reprod Med 2006; 24(4): 242-250
DOI: 10.1055/s-2006-948553
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Extracellular Matrix of the Corpus Luteum

Helen F. Irving-Rodgers1 , Jan Roger2 , Martin R. Luck2 , Raymond J. Rodgers1
  • 1Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
  • 2University of Nottingham, Division of Animal Physiology, School of Biosciences, Sutton Bonington Campus, Loughborough, United Kingdom
Further Information

Publication History

Publication Date:
30 August 2006 (online)

ABSTRACT

The potential importance of the extracellular matrix to luteal formation and development, additional development in response to pregnancy hormones in some species, and luteal function and regression is possibly under-appreciated. Collagens I and III and fibronectin change dynamically during the formation of the corpus luteum and probably reflect the necessity for directional migration of cells in the establishment of a vascularized corpus luteum. Extracellular proteins may also be essential for the maintenance of luteal cell phenotype. Laminins, collagens type IV, and nidogen-1 have been localized to varying degrees of completeness in different species. Each capillary has a subendothelial basal lamina that changes in composition during luteal formation. These subendothelial basal laminas are often adjacent to luteal cells. The high vascularity of corpora lutea may have led to the assumption that luteal cells are surrounded by basal laminas. However, in rat, bovine, and human corpora lutea, there is no evidence of basal laminas surrounding luteal cells. Instead there are fibers or aggregates of basal lamina material rich in laminins interspersed throughout the luteal tissue. Versican appears to be localized to the capsule in human corpora lutea but is widely dispersed in the bovine corpus luteum, similar to the distribution of thecal derived cells, and is not associated with capillaries. Hyaluronan is also present in the luteal parenchyma. Clearly more studies of corpora lutea are required for a fuller understanding of the roles of extracellular matrix in luteal function.

REFERENCES

  • 1 Rodgers R J, Irving-Rodgers H F, Russell D L. Extracellular matrix of the developing ovarian follicle.  Reproduction. 2003;  126(4) 415-424
  • 2 Hay E D. Cell Biology of Extracellular Matrix. 2nd ed. New York; Plenum Press 1991
  • 3 Clarke H G, Hope S A, Byers S, Rodgers R J. Formation of ovarian follicular fluid may be due to the osmotic potential of large glycosaminoglycans and proteoglycans.  Reproduction. 2006;  132 119-131
  • 4 Irving-Rodgers H F, Harland M L, Rodgers R J. A novel basal lamina matrix of the stratified epithelium of the ovarian follicle.  Matrix Biol. 2004;  23(4) 207-217
  • 5 Rodgers H F, Irvine C M, van Wezel I L et al.. Distribution of the alpha1 to alpha6 chains of type IV collagen in bovine follicles.  Biol Reprod. 1998;  59(6) 1334-1341
  • 6 van Wezel I L, Rodgers H F, Rodgers R J. Differential localization of laminin chains in bovine follicles.  J Reprod Fertil. 1998;  112(2) 267-278
  • 7 Irving-Rodgers H F, Catanzariti K D, Aspden W J, D'Occhio M J, Rodgers R J. Remodeling of extracellular matrix at ovulation of the bovine ovarian follicle.  Mol Reprod Dev  , In press
  • 8 Amselgruber W M, Schafer M, Sinowatz F. Angiogenesis in the bovine corpus luteum: an immunocytochemical and ultrastructural study.  Anat Histol Embryol. 1999;  28(3) 157-166
  • 9 Matsushima T, Fukuda Y, Tsukada K, Yamanaka N. The extracellular matrices and vascularization of the developing corpus luteum in rats.  J Submicrosc Cytol Pathol. 1996;  28(4) 441-455
  • 10 Adams E C, Hertig A T. Studies on the human corpus luteum. II. Observations on the ultrastructure of luteal cells during pregnancy.  J Cell Biol. 1969;  41(3) 716-735
  • 11 O'Shea J D, Rodgers R J, D'Occhio M J. Cellular composition of the cyclic corpus luteum of the cow.  J Reprod Fertil. 1989;  85(2) 483-487
  • 12 Lee J M, Dedhar S, Kalluri R, Thompson E W. The epithelial-mesenchymal transition: new insights in signaling, development, and disease.  J Cell Biol. 2006;  172(7) 973-981
  • 13 Rodgers R J, Irving-Rodgers H F, van Wezel I L, Krupa M, Lavranos T C. Dynamics of the membrana granulosa during expansion of the ovarian follicular antrum.  Mol Cell Endocrinol. 2001;  171(1-2) 41-48
  • 14 Rodgers R J, Irving Rodgers H F. Extracellular matrix of the bovine ovarian membrana granulosa.  Mol Cell Endocrinol. 2002;  191(1) 57-64
  • 15 Luck M R, Rodgers R J, Findlay J K. Secretion and gene expression of inhibin, oxytocin and steroid hormones during the in vitro differentiation of bovine granulosa cells.  Reprod Fertil Dev. 1990;  2(1) 11-25
  • 16 Luck M R. Greatly elevated and sustained secretion of oxytocin by bovine granulosa cells in serum-free culture.  J Exp Zool. 1989;  251(3) 361-366
  • 17 Alexopoulos E, Shahid J, Ongley H Z, Richardson M C. Luteinized human granulosa cells are associated with endogenous basement membrane-like components in culture.  Mol Hum Reprod. 2000;  6(4) 324-330
  • 18 Richardson M C, Slack C, Stewart I J. Rearrangement of extracellular matrix during cluster formation by human luteinising granulosa cells in culture.  J Anat. 2000;  196(Pt 2) 243-248
  • 19 Zhao Y, Luck M R. Collagen and its remodelling in ruminants follicles/corpora lutea.  Adv Contracept Deliv Syst. 1996;  12 41-49
  • 20 Madan P, Bridges P J, Komar C M et al.. Expression of messenger RNA for ADAMTS subtypes changes in the periovulatory follicle after the gonadotropin surge and during luteal development and regression in cattle.  Biol Reprod. 2003;  69(5) 1506-1514
  • 21 Murdoch W J, Gottsch M L. Proteolytic mechanisms in the ovulatory folliculo-luteal transformation.  Connect Tissue Res. 2003;  44(1) 50-57
  • 22 Luck M R. The gonadal extracellular matrix.  Oxf Rev Reprod Biol. 1994;  16 33-85
  • 23 Rodgers R J, van Wezel I L, Rodgers H F, Lavranos T C, Irvine C M, Krupa M. Developmental changes in cells and matrix during follicle growth. In: Lauria A, Gandolfi F, Enne G, Gianaroli F Gametes: Development and Function. Serono Symposia; 1998 Rome; Tabloid S.r.L 1998
  • 24 Rodgers R J, van Wezel I L, Irving-Rodgers H F, Lavranos T C, Irvine C M, Krupa M. Roles of extracellular matrix in follicular development.  J Reprod Fertil Suppl. 1999;  54 343-352
  • 25 Rodgers R J, Irving-Rodgers H F, van Wezel I L. Extracellular matrix in ovarian follicles.  Mol Cell Endocrinol. 2000;  163(1-2) 73-79
  • 26 Luck M R, Zhao Y. Identification and measurement of collagen in the bovine corpus luteum and its relationship with ascorbic acid and tissue development.  J Reprod Fertil. 1993;  99(2) 647-652
  • 27 Luck M R, Zhao Y, Silvester L M. Identification and localization of collagen types I and IV in the ruminant follicle and corpus luteum.  J Reprod Fertil Suppl. 1995;  49 517-521
  • 28 Zhao Y, Luck M R. Gene expression and protein distribution of collagen, fibronectin and laminin in bovine follicles and corpora lutea.  J Reprod Fertil. 1995;  104(1) 115-123
  • 29 Silvester L M, Luck M R. Distribution of extracellular matrix components in the developing ruminant corpus luteum: a wound repair hypothesis for luteinization.  J Reprod Fertil. 1999;  116(1) 187-198
  • 30 Casey O M, Morris D G, Powell R, Sreenan J M, Fitzpatrick R. Analysis of gene expression in non-regressed and regressed bovine corpus luteum tissue using a customized ovarian cDNA array.  Theriogenology. 2005;  64(9) 1963-1976
  • 31 Zhao Y, Luck M R. Bovine granulosa cells express extracellular matrix proteins and their regulators during luteinization in culture.  Reprod Fertil Dev. 1996;  8(2) 259-266
  • 32 Timpl R, Brown J C. Supramolecular assembly of basement membranes.  Bioessays. 1996;  18(2) 123-132
  • 33 Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions.  Crit Rev Biochem Mol Biol. 1992;  27(1-2) 93-127
  • 34 Klein G, Langegger M, Timpl R, Ekblom P. Role of laminin A chain in the development of epithelial cell polarity.  Cell. 1988;  55(2) 331-341
  • 35 Ekblom P. Developmentally regulated conversion of mesenchyme to epithelium.  FASEB J. 1989;  3(10) 2141-2150
  • 36 Schymeinsky J, Nedbal S, Miosge N et al.. Gene structure and functional analysis of the mouse nidogen-2 gene: nidogen-2 is not essential for basement membrane formation in mice.  Mol Cell Biol. 2002;  22(19) 6820-6830
  • 37 Sado Y, Kagawa M, Kishiro Y et al.. Establishment by the rat lymph node method of epitope-defined monoclonal antibodies recognizing the six different alpha chains of human type IV collagen.  Histochem Cell Biol. 1995;  104(4) 267-275
  • 38 Sado Y, Kagawa M, Naito I et al.. Organization and expression of basement membrane collagen IV genes and their roles in human disorders.  J Biochem (Tokyo). 1998;  123(5) 767-776
  • 39 Aumailley M, Bruckner-Tuderman L, Carter W G et al.. A simplified laminin nomenclature.  Matrix Biol. 2005;  24(5) 326-332
  • 40 Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis.  Semin Cancer Biol. 2002;  12(3) 197-207
  • 41 Yurchenco P D, Amenta P S, Patton B L. Basement membrane assembly, stability and activities observed through a developmental lens.  Matrix Biol. 2004;  22(7) 521-538
  • 42 Deane H W, Hay M F, Moor R M, Rowson L E, Short R V. The corpus luteum of the sheep: relationships between morphology and function during the oestrous cycle.  Acta Endocrinol (Copenh). 1966;  51(2) 245-263
  • 43 Farin C E, Moeller C L, Sawyer H R, Gamboni F, Niswender G D. Morphometric analysis of cell types in the ovine corpus luteum throughout the estrous cycle.  Biol Reprod. 1986;  35(5) 1299-1308
  • 44 O'Shea J D. Heterogeneous cell types in the corpus luteum of sheep, goats and cattle.  J Reprod Fertil Suppl. 1987;  34 71-85
  • 45 Kenny N, Farin C E, Niswender G D. Morphometric quantification of mitochondria in the two steroidogenic ovine luteal cell types.  Biol Reprod. 1989;  40(1) 191-196
  • 46 O'Shea J D, Cran D G, Hay M F. The small luteal cell of the sheep.  J Anat. 1979;  128(pt 2) 239-251
  • 47 Leardkamolkarn V, Abrahamson D R. Immunoelectron microscopic localization of laminin in rat ovarian follicles.  Anat Rec. 1992;  233(1) 41-52
  • 48 Wordinger R J, Rudick V L, Rudick M J. Immunohistochemical localization of laminin within the mouse.  J Exp Zool. 1983;  228(1) 141-143
  • 49 Irving-Rodgers H F, Friden B E, Mason H D et al.. Extracellular matrix of the human corpus luteum at different stages of the menstrual cycle.  Mol Hum Reprod. , In press
  • 50 Virtanen I, Korhonen M, Petajaniemi N et al.. Laminin isoforms in fetal and adult human adrenal cortex.  J Clin Endocrinol Metab. 2003;  88(10) 4960-4966
  • 51 Noakes P G, Miner J H, Gautam M, Cunningham J M, Sanes J R, Merlie J P. The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1.  Nat Genet. 1995;  10(4) 400-406
  • 52 Zheng P S, Wen J, Ang L C et al.. Versican/PG-M G3 domain promotes tumor growth and angiogenesis.  FASEB J. 2004;  18(6) 754-756
  • 53 Russell D L, Ochsner S A, Hsieh M, Mulders S, Richards J S. Hormone-regulated expression and localization of versican in the rodent ovary.  Endocrinology. 2003;  144(3) 1020-1031
  • 54 Sheng W, Wang G, La Pierre D P et al.. Versican mediates mesenchymal-epithelial transition.  Mol Biol Cell. 2006;  17(4) 2009-2020
  • 55 Tammi M I, Day A J, Turley E A. Hyaluronan and homeostasis: a balancing act.  J Biol Chem. 2002;  277(7) 4581-4584
  • 56 Laurent T C, Laurent U B, Fraser J R. The structure and function of hyaluronan: an overview.  Immunol Cell Biol. 1996;  74(2) A1-A7
  • 57 Pienimaki J P, Rilla K, Fulop C et al.. Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan.  J Biol Chem. 2001;  276(23) 20428-20435
  • 58 Kobayashi H, Sun G W, Terao T. Immunolocalization of hyaluronic acid and inter-alpha-trypsin inhibitor in mice.  Cell Tissue Res. 1999;  296(3) 587-597
  • 59 Salustri A, Yanagishita M, Underhill C B, Laurent T C, Hascall V C. Localization and synthesis of hyaluronic acid in the cumulus cells and mural granulosa cells of the preovulatory follicle.  Dev Biol. 1992;  151(2) 541-551
  • 60 Kobayashi H, Sun G W, Hirashima Y, Terao T. Identification of link protein during follicle development and cumulus cell cultures in rats.  Endocrinology. 1999;  140(8) 3835-3842
  • 61 Hess K A, Chen L, Larsen W J. Inter-alpha-inhibitor binding to hyaluronan in the cumulus extracellular matrix is required for optimal ovulation and development of mouse oocytes.  Biol Reprod. 1999;  61(2) 436-443
  • 62 Chen L, Zhang H, Powers R W, Russell P T, Larsen W J. Covalent linkage between proteins of the inter-alpha-inhibitor family and hyaluronic acid is mediated by a factor produced by granulosa cells.  J Biol Chem. 1996;  271(32) 19409-19414
  • 63 Chen L, Russell P T, Larsen W J. Functional significance of cumulus expansion in the mouse: roles for the preovulatory synthesis of hyaluronic acid within the cumulus mass.  Mol Reprod Dev. 1993;  34(1) 87-93
  • 64 Hirashima Y, Kobayashi H, Gotoh J, Terao T. Inter-alpha-trypsin inhibitor is concentrated in the pericellular environment of mouse granulosa cells through hyaluronan-binding.  Eur J Obstet Gynecol Reprod Biol. 1997;  73(1) 79-84
  • 65 Skorstengaard K, Jensen M S, Sahl P, Petersen T E, Magnusson S. Complete primary structure of bovine plasma fibronectin.  Eur J Biochem. 1986;  161(2) 441-453
  • 66 Mao Y, Schwarzbauer J E. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process.  Matrix Biol. 2005;  24(6) 389-399
  • 67 Corbett S A, Schwarzbauer J E. Fibronectin-fibrin cross-linking: a regulator of cell behavior.  Trends Cardiovasc Med. 1998;  8(8) 357-362
  • 68 Midwood K S, Williams L V, Schwarzbauer J E. Tissue repair and the dynamics of the extracellular matrix.  Int J Biochem Cell Biol. 2004;  36(6) 1031-1037
  • 69 Schwarzbauer J E. Alternative splicing of fibronectin: three variants, three functions.  Bioessays. 1991;  13(10) 527-533
  • 70 Paolella G, Henchcliffe C, Sebastio G, Baralle F E. Sequence analysis and in vivo expression show that alternative splicing of ED-B and ED-A regions of the human fibronectin gene are independent events.  Nucleic Acids Res. 1988;  16(8) 3545-3557
  • 71 Sekiguchi K, Klos A M, Kurachi K, Yoshitake S, Hakomori S. Human liver fibronectin complementary DNAs: identification of two different messenger RNAs possibly encoding the alpha and beta subunits of plasma fibronectin.  Biochemistry. 1986;  25(17) 4936-4941
  • 72 De Candia L M, Rodgers R J. Characterization of the expression of the alternative splicing of the ED-A, ED-B and V regions of fibronectin mRNA in bovine ovarian follicles and corpora lutea.  Reprod Fertil Dev. 1999;  11(6) 367-377
  • 73 Espey L L. Ovulation as an inflammatory reaction-a hypothesis.  Biol Reprod. 1980;  22(1) 73-106
  • 74 Murdoch W J. Ovarian surface epithelium during ovulatory and anovulatory ovine estrous cycles.  Anat Rec. 1994;  240(3) 322-326
  • 75 Murdoch W J. Perturbation of sheep ovarian surface epithelial cells by ovulation: evidence for roles of progesterone and poly(ADP-ribose) polymerase in the restoration of DNA integrity.  J Endocrinol. 1998;  156(3) 503-508
  • 76 Clarke R AF. The Molecular and Cellular Biology of Wound Repair. New York; Plenum Press 1996
  • 77 Gay S, Vijanto J, Raekallio J, Penttinen R. Collagen types in early phases of wound healing in children.  Acta Chir Scand. 1978;  144(4) 205-211
  • 78 Williams I F, McCullagh K G, Silver I A. The distribution of types I and III collagen and fibronectin in the healing equine tendon.  Connect Tissue Res. 1984;  12(3-4) 211-227
  • 79 Grinnell F, Billingham R E, Burgess L. Distribution of fibronectin during wound healing in vivo.  J Invest Dermatol. 1981;  76(3) 181-189
  • 80 Gottsch M L, Van Kirk E A, Murdoch W J. Tumour necrosis factor alpha up-regulates matrix metalloproteinase-2 activity in periovulatory ovine follicles: metamorphic and endocrine implications.  Reprod Fertil Dev. 2000;  12(1-2) 75-80
  • 81 Oksjoki S, Sallinen S, Vuorio E, Anttila L. Cyclic expression of mRNA transcripts for connective tissue components in the mouse ovary.  Mol Hum Reprod. 1999;  5(9) 803-808
  • 82 Redmer D A, Doraiswamy V, Bortnem B J et al.. Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum.  Biol Reprod. 2001;  65(3) 879-889

 Dr.
R. J Rodgers

Research Centre for Reproductive Health, Disciline of Obstetrics and Gynaecology

University of Adelaide, Adelaide, South Australia 5005, Australia

Email: ray.rodgers@adelaide.edu.au

    >