References and Notes
For reviews, see:
<A NAME="RG28706ST-1A">1a</A>
Wasilke J.
Obrey SJ.
Baker RT.
Bazan GC.
Chem. Rev.
2005,
105:
1001
<A NAME="RG28706ST-1B">1b</A>
Ajamian A.
Gleason JL.
Angew. Chem. Int. Ed.
2004,
43:
3754
<A NAME="RG28706ST-1C">1c</A>
Lee JM.
Na Y.
Han H.
Chang S.
Chem. Soc. Rev.
2004,
33:
302
<A NAME="RG28706ST-2">2</A> For a review, see:
Müller TJJ.
Top. Organomet. Chem.
2006,
19:
149
<A NAME="RG28706ST-3">3</A> For a recent monograph, see: Multicomponent Reactions
Zhu J.
Bienaymé H.
Wiley-VCH;
Weinheim:
2005.
For reviews, see:
<A NAME="RG28706ST-4A">4a</A>
Bienaymé H.
Hulme C.
Oddon G.
Schmitt P.
Chem. Eur. J.
2000,
6:
3321
<A NAME="RG28706ST-4B">4b</A>
Dömling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3168
<A NAME="RG28706ST-4C">4c</A>
Ugi I.
Dömling A.
Werner B.
J. Heterocycl. Chem.
2000,
37:
647
<A NAME="RG28706ST-4D">4d</A>
Weber L.
Illgen K.
Almstetter M.
Synlett
1999,
366
<A NAME="RG28706ST-4E">4e</A>
Armstrong RW.
Combs AP.
Tempest PA.
Brown SD.
Keating TA.
Acc. Chem. Res.
1996,
29:
123
<A NAME="RG28706ST-4F">4f</A>
Ugi I.
Dömling A.
Hörl W.
Endeavour
1994,
18:
115
<A NAME="RG28706ST-4G">4g</A>
Posner GH.
Chem. Rev.
1986,
86:
831
For reviews on diversity-oriented syntheses, see:
<A NAME="RG28706ST-5A">5a</A>
Schreiber SL.
Burke MD.
Angew. Chem. Int. Ed.
2004,
43:
46
<A NAME="RG28706ST-5B">5b</A>
Burke MD.
Berger EM.
Schreiber SL.
Science
2003,
302:
613
<A NAME="RG28706ST-5C">5c</A>
Arya P.
Chou DTH.
Baek MG.
Angew. Chem. Int. Ed.
2001,
40:
339
<A NAME="RG28706ST-5D">5d</A>
Cox B.
Denyer JC.
Binnie A.
Donnelly MC.
Evans B.
Green DVS.
Lewis JA.
Mander TH.
Merritt AT.
Valler MJ.
Watson SP.
Progr. Med. Chem.
2000,
37:
83
<A NAME="RG28706ST-5E">5e</A>
Schreiber SL.
Science
2000,
287:
1964
<A NAME="RG28706ST-6">6</A>
Kobayashi S.
Chem. Soc. Rev.
1999,
28:
1
<A NAME="RG28706ST-7A">7a</A>
Kressierer CJ.
Müller TJJ.
Org. Lett.
2005,
7:
2237
<A NAME="RG28706ST-7B">7b</A>
Karpov AS.
Merkul E.
Oeser T.
Müller TJJ.
Chem. Commun.
2005,
2581
<A NAME="RG28706ST-8A">8a</A>
Braun RU.
Ansorge M.
Müller TJJ.
Chem. Eur. J.
2006,
12: 9081
<A NAME="RG28706ST-8B">8b</A>
Müller TJJ.
Ansorge M.
Aktah D.
Angew. Chem. Int. Ed.
2000,
39:
1253
For lead reviews on Sonogashira couplings, see for example:
<A NAME="RG28706ST-9A">9a</A>
Takahashi S.
Kuroyama Y.
Sonogashira K.
Hagihara N.
Synthesis
1980,
627
<A NAME="RG28706ST-9B">9b</A>
Sonogashira K. In
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1998.
p.203
<A NAME="RG28706ST-9C">9c</A>
Sonogashira K.
J. Organomet. Chem.
2002,
653:
46
<A NAME="RG28706ST-9D">9d</A>
Negishi E.-I.
Anastasia L.
Chem. Rev.
2003,
103:
1979
<A NAME="RG28706ST-9E">9e</A>
Marsden JA.
Haley MM. In Metal-Catalyzed Cross-Coupling Reactions
2nd ed.:
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
p.317
<A NAME="RG28706ST-10">10</A>
Braun RU.
Müller TJJ.
Mol. Diversity
2003,
6:
251
<A NAME="RG28706ST-11">11</A>
Typical Procedure (6a, Table 1, Entry 11).
To a magnetically stirred solution of 86 mg (0.30 mmol) of 4a, 42 mg (0.31 mmol) of 5a, 8 mg (12 µmol) of Pd(PPh3)Cl2, 2 mg (10 µmol) of CuI, and 16 mg (60 µmol) of PPh3 in 0.9 mL of degassed THF in a microwave vial under nitrogen were added 48 µL (0.32
mmol) of DBU. Then the sealed vessel was heated by microwave irradiation to 120 °C
for 30 min. After cooling to r.t., H2O was added and the aqueous layer was extracted with EtOAc. The combined organic phases
were dried with MgSO4. The solvents were removed in vacuo and the residue was chromatographed on silica
gel to give 64 mg (64%) of the desired product 6a, mp 144-145 °C. 1H NMR (300 MHz, CDCl3): δ = 1.36 (s, 12 H), 7.48-7.62 (m, 6 H), 7.79-7.87 (m, 3 H), 8.01-8.04 (m, 2 H).
13C NMR (75.5 MHz, CDCl3): δ = 24.9 (CH3), 84.0 (Cquat.), 122.8 (CH), 127.6 (CH), 128.5 (CH), 128.6 (CH), 132.8 (CH), 135.3 (CH), 137.3 (Cquat.), 138.2 (Cquat.), 144.6 (CH), 190.5 (Cquat.). MS (70 eV, EI): m/z (%) = 334 (100) [M+], 207 (32) [M+ - Bpin]. HRMS: m/z calcd for C21H23BO3: 334.1740; found: 334.1731. Anal. Calcd for C21H23BO3 (334.2): C, 75.47; H, 6.94. Found: C, 75.36; H, 6.96.
<A NAME="RG28706ST-12">12</A>
All compounds have been fully characterized by 1H NMR, 13C NMR and DEPT, COSY, NOESY, HETCOR and HMBC NMR experiments, IR, MS, HRMS and/or
combustion analyses.
For recent reviews and monographs on microwave-accelerated syntheses, see for example:
<A NAME="RG28706ST-13A">13a</A>
Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
6250
<A NAME="RG28706ST-13B">13b</A>
Nüchter M.
Ondruschka B.
Bonrath W.
Gum A.
Green Chem.
2004,
6:
128
<A NAME="RG28706ST-13C">13c</A>
Nüchter M.
Müller U.
Ondruschka B.
Tied A.
Lautenschläger W.
Chem. Eng. Technol.
2003,
26:
1207
<A NAME="RG28706ST-13D">13d</A>
de la Hoz A.
D’Waz-Ortis A.
Moreno A.
Langa F.
Eur. J. Org. Chem.
2000,
3659
<A NAME="RG28706ST-13E">13e</A>
Xu Y.
Guo Q.-X.
Heterocycles
2004,
63:
903
<A NAME="RG28706ST-13F">13f</A>
Microwaves in Organic Synthesis
Loupy A.
Wiley-VCH;
Weinheim:
2002.
<A NAME="RG28706ST-13G">13g</A>
Hayes BL.
Microwave Synthesis: Chemistry at the Speed of Light
CEM Publishing;
Matthews, NC:
2002.
<A NAME="RG28706ST-13H">13h</A>
Microwave-Assisted Organic Synthesis
Lidström P.
Tierney JP.
Blackwell;
Oxford:
2004.
<A NAME="RG28706ST-13I">13i</A>
Kappe CO.
Stadler A.
Microwaves in Organic and Medicinal Chemistry
Wiley-VCH;
Weinheim:
2005.
<A NAME="RG28706ST-14">14</A>
Schramm OG.
Müller TJJ.
Synlett
2006,
1841
<A NAME="RG28706ST-15">15</A>
Without isolation, the yield for the first step is apparently higher than in the
optimization (Table
[1]
, entry 11).
<A NAME="RG28706ST-16">16</A>
Typical Procedure (7a, Table 3, Entry 11).
To a magnetically stirred solution of 86 mg (0.30 mmol) of 4a, 42 mg (0.31 mmol) of 5a, 8 mg (12 µmol) of Pd(PPh3)Cl2, 2 mg (10 µmol) of CuI, and 16 mg (60 µmol) of PPh3 in 0.9 mL of degassed THF in a microwave vial under nitrogen were added 48 µL (0.32
mmol) of DBU. Then the sealed vessel was heated by microwave irradiation to 120 °C
for 30 min. After cooling to r.t. 55 mg (0.31 mmol) of 1a, 63 mg (0.45 mmol) of K2CO3, and 0.6 mL of H2O were added to the reaction mixture, and then the sealed vessel was heated by microwave
irradiation to 110 °C for 20 min. After cooling to r.t. H2O was added and the aqueous layer was extracted with EtOAc. The combined organic phases
were dried with MgSO4. The solvents were removed in vacuo and the residue was chromatographed on silica
gel to give 70 mg (76%) of 7a as a yellow solid, mp 120-122 °C. 1H NMR (300 MHz, CDCl3): δ = 7.50-7.67 (m, 6 H), 7.70-7.77 (m, 6 H), 7.85 (d, J = 15.6 Hz, 1 H), 8.05-8.02 (m, 2 H). 13C NMR (75.5 MHz, CDCl3): δ = 111.4 (Cquat.), 118.7 (Cquat.), 122.7 (CH), 127.6 (CH), 127.7 (CH), 128.5 (CH), 128.7 (CH), 129.1 (CH), 132.7 (CH),
132.9 (CH), 135.2 (Cquat.), 138.0 (Cquat.), 140.9 (Cquat.), 143.6 (CH), 144.5 (Cquat.), 190.2 (Cquat.). MS (70 eV, EI): m/z (%) = 309 (100) [M+], 207 (50) [M+ - C6H4CN]. Anal. Calcd for C22H15NO (309.4): C, 85.41; H, 4.89; N, 4.53. Found: C, 85.49; H, 4.91; N, 4.58.