References and Notes
For recent reviews on the chemistry of C-glycoside analogues, see:
<A NAME="RG04008ST-1A">1a</A>
Wu Q.
Simons C.
Synthesis
2004,
1533
<A NAME="RG04008ST-1B">1b</A>
Bililign T.
Griffith BR.
Thorson JS.
Nat. Prod. Rep.
2005,
22:
742
<A NAME="RG04008ST-1C">1c</A>
Lee DYW.
He MS.
Curr. Top. Med. Chem.
2005,
5:
1333
For a brief overview of the biological and clinical impact of tiazofurin, see:
<A NAME="RG04008ST-2A">2a</A> For pyrazofurin and formycin, see:
Grifantini M.
Curr. Opin. Investig. Drugs
2000,
1:
257
<A NAME="RG04008ST-2B">2b</A>
Shaban MAE.
Nasr AZ.
In Advances in Heterocyclic Chemistry
Vol. 68:
Katritzky AR.
Academic Press;
San Diego:
1997.
p.259
<A NAME="RG04008ST-2C">2c</A> For showdomycin, see:
Shaban MAE.
Nasr AZ.
In Advances in Heterocyclic Chemistry
Vol. 70:
Katritzky AR.
Academic Press;
San Diego:
1998.
p.230
<A NAME="RG04008ST-2D">2d</A>
Nishimura H.
Mayama M.
Komatsu Y.
Kato H.
Shimsoka N.
Tanaka Y.
J. Antibiot., Ser. A
1964,
17:
148
<A NAME="RG04008ST-2E">2e</A>
Rabinovitz M.
Uehara Y.
Vistica DT.
Science
1979,
206:
1085
<A NAME="RG04008ST-2F">2f</A>
Barett AGM.
Broughton HB.
J. Org. Chem.
1986,
51:
495
<A NAME="RG04008ST-3A">3a</A>
Adamo MFA.
Adlington RM.
Baldwin JE.
Day AL.
Tetrahedron
2004,
60:
841
<A NAME="RG04008ST-3B">3b</A>
Hashmi IA.
Ali FI.
Feist H.
Michalik M.
Reinke H.
Peseke K.
Synthesis
2007,
2819
<A NAME="RG04008ST-3C">3c</A>
Oda H.
Hanami T.
Iwashita T.
Kojima M.
Itoh M.
Hayashizaki Y.
Tetrahedron
2007,
63:
11021
<A NAME="RG04008ST-3D">3d</A>
Hainke S.
Singh I.
Hemmings J.
Seitz O.
J. Org. Chem.
2007,
72:
8811
<A NAME="RG04008ST-4A">4a</A>
Kool ET.
Acc. Chem. Res.
2002,
35:
936
<A NAME="RG04008ST-4B">4b</A>
Sismour AM.
Benner SA.
Nucleic Acids Res.
2005,
33:
5640
<A NAME="RG04008ST-4C">4c</A>
Leconte AM.
Matsuda S.
Hwang GT.
Romesberg FE.
Angew. Chem. Int. Ed.
2006,
45:
4326
See, for example:
<A NAME="RG04008ST-5A">5a</A>
Tanaka K.
Shinoya M.
J. Org. Chem.
1999,
64:
5002
<A NAME="RG04008ST-5B">5b</A>
Seela F.
Debelak H.
J. Org. Chem.
2001,
66:
3303
See, for example:
<A NAME="RG04008ST-6A">6a</A>
Chen D.-W.
Beuscher AE.
Stevens RC.
Wirsching P.
Lerner RA.
Janada KD.
J. Org. Chem.
2001,
66:
1725
<A NAME="RG04008ST-6B">6b</A>
Griesang N.
Richert C.
Tetrahedron Lett.
2002,
43:
8755
<A NAME="RG04008ST-6C">6c</A>
Aketani S.
Tanaka K.
Yamamoto K.
Ishihama A.
Cao H.
Tengeiji A.
Hiraoka S.
Shiro M.
Shionoya M.
J. Med. Chem.
2002,
45:
5594
<A NAME="RG04008ST-7A">7a</A> For the synthesis of aryl C-glycosides via the Heck reaction, see:
Wellington KW.
Benner SA.
Nucleosides, Nucleotides Nucleic Acids
2005,
1309 ; (review)
<A NAME="RG04008ST-7B">7b</A>
Oda H.
Hanami T.
Iwashita T.
Kojima M.
Itoh M.
Hayashizaki Y.
Tetrahedron
2007,
63:
12747
<A NAME="RG04008ST-8A">8a</A>
Guianvarc’h D.
Benhida R.
Fourrey J.-L.
Maurisse R.
Sun J.-S.
Chem. Commun.
2001,
1814
<A NAME="RG04008ST-8B">8b</A>
Guianvarc’h D.
Fourrey J.-L.
Sun J.-S.
Maurisse R.
Benhida R.
Bioorg. Med. Chem.
2003,
11:
2751
<A NAME="RG04008ST-8C">8c</A>
Guianvarc’h D.
Fourrey J.-L.
Tran Huu Dau M.-E.
Guérineau V.
Benhida R.
J. Org. Chem.
2002,
67:
3724
<A NAME="RG04008ST-8D">8d</A>
Guianvarc’h D.
Fourrey J.-L.
Maurisse R.
Sun J.-S.
Benhida R.
Org. Lett.
2002,
4:
4209
<A NAME="RG04008ST-9">9</A> Ratiometric fluorescent probes will be used (unpublished results). For classical
fluorescent nucleosides, see:
Wilson JN.
Kool ET.
Org. Biomol. Chem.
2006,
4:
4265
<A NAME="RG04008ST-10A">10a</A>
Joos PE.
Esmans EL.
Domise RA.
De Bruyn A.
Balzarini JM.
De Clercq ED.
Helv. Chim. Acta
1992,
75:
613
<A NAME="RG04008ST-10B">10b</A>
Aldehyde 1 was obatined from 2′-deoxyribose in four steps and 62% overall yield.
<A NAME="RG04008ST-11">11</A>
Typical Procedure
To a solution of benzofuran (2 mmol) in anhyd THF (6 mL) was added dropwise n-BuLi (1.6 M in hexane, 2 mmol) at 0 °C. The mixture was stirred for 30 min and aldehyde
1 (412 mg, 1 equiv) in anhyd THF (2 mL) was slowly added. The reaction was stirred
during 90 min and warmed slowly to r.t., then quenched with a cold solution of NH4Cl and extracted with CH2Cl2 (3 × 40 mL). The combined organic layers were dried (MgSO4) and evaporated under reduced pressure to give a crude oil. Silica gel column chroma-tography
purification using gradient elution [cyclohexane (100%) to EtOAc-cyclohexane (8:92)]
afforded (S)-2a and (R)-2a as yellow oils (440 mg, 83%, R/S = 35:65).
Compound (S)-2a: TLC (cyclohexane-EtOAc, 7:3). R
f
= 0.49. 1H NMR (200 MHz, CDCl3): δ = 0.95 (s, 9 H, t-Bu), 1.28 (s, 3 H, CH3), 1.37 (s, 3 H, CH3), 2.06-2.27 (m, 1 H, H-2′), 2.37-2.47 (m, 1 H, H-2′), 3.72 (d, 2 H, J = 6.3 Hz, 2 × H-5′), 4.30 (q, 1 H, J = 6.2 Hz, H-4′), 4.42-4.52 (m, 1 H, H-3′), 5.12 (dd, 1 H, J = 3.8, 8.7 Hz, H-1′), 6.67 (s, 1 H, H-furan), 7.26 (m, 2 H, 2 × H-Ar), 7.36 (m, 7
H, 6 × H-Ph and 1 × H-Ar), 7.55 (m, 1 H, H-Ar), 7.64 (m, 4 H, 4 × H-Ph) ppm. 13C NMR (50 MHz, CDCl3): δ = 19.10 (Me3
C), 25.44 (Me
2
C), 26.75 (Me
3
C), 27.91 (Me
2
C), 35.36 (C-2′), 62.19 (C-5′), 68.14 (C-1′), 76.85 (C-3′), 77.51 (C-4′), 102.49 (C-3),
108.78 (Me2
C), 111.15 (C-7), 120.96 (C-4), 122.63 (C-5), 123.92 (C-6), 127.70 (C-Ph), 127.72 (C-Ar),
129.77, 132.90, and 135.51 (C-Ph), 154.75 (C-Ar), 158.64 (C-2) ppm. MS (ESI+): m/z = 568.5 [MK+], 552.6 [MNa+].
Compound (R)-2a: TLC (cyclohexane-EtOAc, 7:3). R
f
= 0.40. 1H NMR (200 MHz, CDCl3): δ = 1.00 (s, 9 H, t-Bu), 1.26 (s, 3 H, CH3), 1.38 (s, 3 H, CH3), 2.22-2.45 (m, 2 H, 2 × H-2′), 3.69-3.74 (m, 2 H, 2 × H-5′), 4.20-4.29 (m, 1 H,
H-4′), 4.42-4.52 (m, 1 H, H-3′), 5.08-5.16 (m, 1 H, H-1′), 6.65 (s, 1 H, H-furan),
7.26 (m, 2 H, 2 × H-Ar), 7.36 (m, 7 H, 6 × H-Ph and 1 × H-Ar), 7.55 (m, 1 H, H-Ar),
7.64 (m, 4 H, 4 × H-Ph) ppm. 13C NMR (50 MHz, CDCl3): δ = 19.19 (Me3
C), 25.54 (Me
2
C), 26.86 (Me
3
C), 28.08 (Me
2
C), 34.12 (C-2′), 62.36 (C-5′), 66.52 (C-1′), 74.52 (C-3′), 77.48 (C-4′), 102.69 (C-3),
108.35 (Me2
C), 111.21 (C-7), 120.99 (C-4), 122.75 (C-5), 123.97 (C-6), 127.79 (C-Ph), 128.30 (C-Ar),
129.87, 133.04, and 135.62 (C-Ph), 154.90 (C-Ar), 159.56 (C-2) ppm. MS (ESI+): m/z = 552.6 [MNa+], 450.7.
<A NAME="RG04008ST-12">12</A>
All products gave satisfactory spectral data. Data for selected products are given
here.
Compound (R,S)-2b: TLC (cyclohexane-EtOAc, 7:3): R
f
= 0.70-0.75. 1H NMR (200 MHz, CDCl3): δ = 1.04 (s, 9 H, t-Bu), 1.34 (s, 3 H, CH3), 1.41 (s, 3 H, CH3), 1.50-2.2 (m, 2 H, H-2′), 3.68-3.71 (m, 2 H, 2 × H-5′), 4.21-4.42 (m, 2 H, H-4′,
H-3′), 4.88-4.95 (m, 1 H, H-1′), 6.25-6.26 (m, 2 H, 2 × H-Ar), 7.38-7.41 (m, 7 H,
6 × H-Ph, 1 × H-Ar), 7.62-7.66 (m, 4 H, 4 × H-Ph) ppm. 13C NMR (50 MHz, CDCl3): δ = 19.29 (Me3
C), 25.66 (Me
2
C), 26.93 (Me
3
C), 28.14 (Me
2
C), 35.40 (C-2′), 62.43 (C-5′), 67.64-65.66 (C-1′), 76.54-74.36 (C-3′), 77.18 (C-4′),
106.01-108.69 (C-Ar), 108.83 (Me2
C), 110.26-111.95 (C-Ar), 127.91, 129.96, 133.17, 135.70, 142.03 (C-Ph and C-Ar) ppm.
MS (ESI+):
m/z = 503.2 [MNa+].
Compound (R,S)-2e: TLC (cyclohexane-EtOAc, 7:3). R
f
= 0.50-0.53. 1H NMR (200 MHz, CDCl3): δ = 0.96 (s, 9 H, t-Bu), 1.27 (s, 3 H, CH3), 1.31 (s, 3 H, CH3), 1.50-2.11 (m, 2 H, H-2′), 3.59-3.65 (m, 2 H, 2 × H-5′), 4.12-4.22 (m, 1 H, H-4′),
4.30-4.37 (m, 1 H, H-3′), 5.00-5.10 (m, 0.4 H, H-1′), 5.11-5.20 (m, 0.6 H, H-1′),
6.80-6.89 (m, 2 H, 2 × H-Ar), 7.20-7.26 (m, 1 H, H-Ar), 7.30-7.40 (m, 6 H, 6 × H-Ph),
7.52-7.58 (m, 4 H, 4 × H-Ph) ppm. 13C NMR (50 MHz, CDCl3): δ = 19.29 (Me3
C), 25.63 (Me
2
C), 26.98 (Me
3
C), 28.17 (Me
2
C), 37.91 (C-2′), 62.54 (C-5′), 68.01 (C-1′), 77.37 (C-3′), 77.62 (C-4′), 108.42 (Me2
C), 123.27, 124.43, 126.85, 127.88, 129.96, 133.10, 135.69, 149.07 (C-Ph and C-Ar)
ppm. MS (ESI+): m/z = 534.6 [MK+], 518.7 [MNa+], 497.6 [MH+].
<A NAME="RG04008ST-13">13</A>
Jiang YL.
Stivers JT.
Tetrahedron Lett.
2003,
44:
4051
<A NAME="RG04008ST-14">14</A>
General Procedure
To a solution of 2a (R or S, 1 mmol) in toluene (25 mL) was added PTSA (0.2 mmol, 0.2 equiv). The mixture was
stirred at 50 °C for 4 h then quenched with a sat. soln of NaHCO3 and extracted with CH2Cl2 (3 × 30 mL). The combined organic layers were dried over MgSO4 and evaporated under reduced pressure to give a crude oil. Silica gel column chromatography
purification using gradient elution [cyclohexane (100%) to EtOAc-cyclohexane (20:80)]
afforded 3a as a yellow oil.
Compound α-3a: TLC (cyclohexane-EtOAc, 7:3). R
f
= 0.43. 1H NMR (200 MHz, CDCl3): δ = 1.08 (s, 9 H, t-Bu), 2.27-2.39 (m, 1 H, H-2′), 2.66-2.80 (m, 1 H, H-2′), 3.69-3.88 (m, 2 H, 2 × H-5′),
4.16-4.20 (m, 1 H, H-4′), 4.52-4.59 (m, 1 H, H-3′), 5.24-5.31 (dd, 1 H, J = 8.0, 5.3 Hz, H-1′), 6.69 (s, 1 H, H-furan), 7.39-7.66 (m, 10 H, 6 × H-Ph and 4
× H-Ar), 7.67-7.71 (m, 4 H, 4 × H-Ph) ppm. 13C NMR (50 MHz, CDCl3): δ = 19.40 (Me3
C), 27.05 (Me
3
C), 39.40 (C-2′), 64.98 (C-5′), 74.04 and 74.78 (C3′, C-1′), 86.53 (C-4′), 103.95,
111.48, 121.31, 123.03, 124.54, 127.97, 129.99, 135.75, 156.72 (C-Ph and C-Ar) ppm.
MS (ESI+):
m/z = 510.8 [MK+], 495.1 [MNa+].
Compound β-3a: TLC (cyclohexane-EtOAc, 7:3): R
f
= 0.26. 1H NMR (200 MHz, CDCl3): δ = 1.07 (s, 9 H, t-Bu), 2.20-2.42 (m, 1 H, H-2′), 2.47-2.56 (m, 1 H, H-2′), 3.68-4.01 (m, 2 H, 2 × H-5′),
4.02-4.07 (m, 1 H, H-4′), 4.62-4.67 (m, 1 H, H-3′), 5.30 (dd, 1 H, J = 9.3, 6.2 Hz, H-1′), 6.63 (s, 1 H, H-furan), 7.31-7.60 (m, 10 H, 6 × H-Ph and 4
× H-Ar), 7.62-7.79 (m, 4 H, 4 × H-Ph) ppm. 13C NMR (50 MHz, CDCl3): δ = 19.40 (Me3
C), 27.05 (Me
3
C), 39.56 (C-2′), 64.77 (C-5′), 73.82 (C-1′), 74.40 (C-3′), 87.22 (C-4′), 104.08,
111.43, 121.16, 122.81, 124.34, 127.90, 129.96, 135.74, 156.72 (C-Ph and C-Ar) ppm.
MS (ESI+):
m/z = 510.8 [MK+], 495.1 [MNa+].
<A NAME="RG04008ST-15">15</A>
Compound α-4a: TLC (CH2Cl2-MeOH, 98:2). R
f
= 0.3. 1H NMR (500 MHz, CDCl3): δ = 2.33-2.37 (m, 1 H, H-2′), 2.61-2.64 (m, 1 H, H-2′), 3.73-3.76 (m, 2 H, 2 ×
H-5′), 4.01-4.04 (q, 1 H, J = 4.7 Hz, H-4′), 4.43-4.45 (q, 1 H, J = 5.7 Hz, H-3′), 5.21 (t, 1 H, J = 6.9 Hz, H-1′), 6.67 (s, 1 H, H-furan), 7.16-7.20 (t, 1 H, J = 7.2 Hz, H-Ar), 7.22-7.25 (m, 1 H, H-Ar), 7.42 (d, 1 H, J = 8.2 Hz, H-Ar), 7.50 (d, 1 H, J = 7.6 Hz, H-Ar) ppm. 13C NMR (CDCl3, 125 MHz): δ = 39.23 (C-2′), 58.74 (C-5′), 62.74 (C-3′), 73.23 (C-1′), 85.69 (C-4′),
103.95 (C-3), 111.35 (C-7), 121.85 (C-4), 122.87 (C-5), 124. (C-6), 128.15 (C-Ar),
154.75 (C-Ar), 157.30 (C-2) ppm. MS (ESI+): m/z = 256.7 [MNa+], 241.9 [MLi+], 214.7 [M+ - H2O].
Compound β-4a: TLC (CH2Cl2-MeOH, 98:2). R
f
= 0.28. 1H NMR (500 MHz, CDCl3): δ = 2.17-2.30 (m, 1 H, H-2′), 2.45-2.51 (m, 1 H, H-2′), 3.75 (d, 2 H, J = 4.4 Hz, 2 × H-5′), 4.05 (m, 1 H, H-4′), 4.56 (m, 1 H, H-3′), 5.30 (dd, 1 H, J = 6.6, 8.8 Hz, H-1′), 6.67 (s, 1 H, H-furan), 7.18-7.21 (m, 1 H, H-Ar), 7.22-7.25
(m, 1 H, H-Ar), 7.45 (d, 1 H, J = 8.3 Hz, H-Ar), 7.52 (d, 1 H, J = 7.8 Hz, H-Ar) ppm. 13C NMR (125 MHz, CDCl3): δ = 39.91 (C-2′), 58.82 (C-5′), 63.54 (C-3′), 73.78 (C-1′), 87.73 (C-4′), 104.23
(C-3), 111.45 (C-7), 121.12 (C-4), 122.89 (C-5), 124.46 (C-6), 128.15 (C-Ar), 155.18
(C-Ar), 156.81 (C-2) ppm. MS (ESI+): m/z = 256.7 [MNa+], 241.9 [MLi+], 214.7 [M+ - H2O].