Drug Res (Stuttg) 2022; 72(09): 487-495
DOI: 10.1055/a-1899-8233
Review

Nrf2 Mediated Heme Oxygenase-1 Activation Contributes to Diabetic Wound Healing – an Overview

1   Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
,
Tharani Mohanasundaram
1   Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
,
Ruchi Tiwari
2   Pranveer Singh institute of Technology (Pharmacy), Kanpur – Agra – Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, India
,
Gaurav Tiwari
2   Pranveer Singh institute of Technology (Pharmacy), Kanpur – Agra – Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, India
,
Putta Vijayakumar
3   Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
,
Bhargav Bhongiri
3   Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
,
Rinu Mary Xavier
3   Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamilnadu, India
› Author Affiliations
Funding This review article did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Abstract

Diabetic wound healing is a complicated procedure because hyperglycemia changes the various stages of wound healing. In type 2 diabetes mellitus (T2DM), oxidative stress is proven to be a critical factor in causing non-healing wounds and aggravating the inflammatory phase, resulting in the amputation of lower limbs in T2DM patients. This makes scientists figure out how to control oxidative stress and chronic inflammation at the molecular level. Nuclear factor erythroid 2- related factor 2 (Nrf2) releases antioxidant proteins to suppress reactive oxygen species (ROS) activation and inflammation. The current review discusses the role of Nrf2 in improving diabetic wound healing by reducing the production of ROS and thus reducing oxidative stress, as well as inhibiting nuclear factor kappa B (NF-kB) dissociation and nuclear translocation, which prevents the release of inflammatory mediators and increases antioxidant protein levels, thereby improving diabetic wound healing. As a result, the researcher will be able to find a more effective diabetic wound healing therapy.



Publication History

Received: 01 June 2022

Accepted: 11 July 2022

Article published online:
05 August 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zhao R, Liang H, Clarke E. et al. Inflammation in chronic wounds. Int J Mol Sci 2016; 17: 2085 DOI: 10.3390/ijms17122085.
  • 2 Rodrigues M, Kosaric N, Bonham CA. et al. Wound healing: A cellular perspective. Physiol Rev 2019; 99: 665-706 DOI: 10.1152/physrev.00067.2017.
  • 3 Gonzalez ACDO, Andrade ZDA, Costa TF. et al. Wound healing – A literature review. An Bras Dermatol 2016; 91: 614-620
  • 4 Xu Z, Han S, Gu Z. et al. Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing. Adv Healthc Mater 2020; 9
  • 5 Dunnill C, Patton T, Brennan J. et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 2017; 14: 89-96 DOI: 10.1111/iwj.12557.
  • 6 Nussbaum SR, Carter MJ, Fife CE. et al. An Economic Evaluation of the Impact, Cost, and Medicare Policy Implications of Chronic Nonhealing Wounds. Value Heal 2018; 21: 27-32 DOI: 10.1016/j.jval.2017.07.007.
  • 7 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes – 2022. Diabetes Care 2022; 45: S17-S38 DOI: 10.2337/dc22-S002.
  • 8 Chai W, Wang Y, Jiao F. et al. A Severe Diabetic Foot Ulcer With Intermediate Cuneiform Displacement and Multidrug-Resistant Pseudomonas aeruginosa Infection: A Rare Case Report. Front Med 2020; 7 DOI: 10.3389/fmed.2020.00131.
  • 9 Wei D, Zhu XM, Chen YY. et al. Chronic wound biofilms: Diagnosis and therapeutic strategies. Chin Med J (Engl) 2019; 132: 2737-2744
  • 10 Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013; 53: 401-426
  • 11 Kumar H, Kim IS, More SV. et al. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep 2014; 31: 109-139 DOI: 10.1039/c3np70065h.
  • 12 Li D, Landén NX. MicroRNAs in skin wound healing. Eur J Dermatol 2017; 27: 12-14 DOI: 10.1684/ejd.2017.3040.
  • 13 Ellis S, Lin EJ, Tartar D. Immunology of Wound Healing. Curr Dermatol Rep 2018; 7: 350-358
  • 14 Cañedo-Dorantes L, Cañedo-Ayala M. Skin acute wound healing: A comprehensive review. Int J Inflam 2019; 2019
  • 15 Lipsky BA, Senneville É, Abbas ZG. et al. Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update) on behalf of the International Working Group on the Diabetic Foot (IWGDF). Diabetes Metab Res Rev 2020; 36
  • 16 Crawford F, Nicolson DJ, Amanna AE. et al. Preventing foot ulceration in diabetes: systematic review and meta-analyses of RCT data. Diabetologia 2020; 63: 49-64
  • 17 Versey Z, da Cruz Nizer WS, Russell E. et al. Biofilm-Innate Immune Interface: Contribution to Chronic Wound Formation. Front Immunol 2021; 12: 648554 DOI: 10.3389/fimmu.2021.648554.
  • 18 Karan A, Bhakkiyalakshmi E, Jayasuriya R. et al. The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction. Pharmacol Res 2020; 153: 104601 DOI: 10.1016/j.phrs.2019.104601.
  • 19 Satish L. Chemokines as Therapeutic Targets to Improve Healing Efficiency of Chronic Wounds. Adv Wound Care 2015; 4: 651-659 DOI: 10.1089/wound.2014.0602.
  • 20 Tonelli C, In I, Chio C. et al. Transcriptional Regulation by Nrf2 1 1 2018; 29: 1727-1746 DOI: 10.1089/ars.2017.7342.
  • 21 Periayah MH, Halim AS, Saad AZM. Mechanism action of platelets and crucial blood coagulation pathways in Hemostasis. Int J Hematol Stem Cell Res 2017; 11: 319-327
  • 22 Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: Getting to the bottom of an inflammatory triangle: Biology gone wrong-thrombosis & fibrosis. Open Biol 2020; 10: 200161 . doi: DOI: 10.1098/rsob.200161.
  • 23 Digiacomo V, Meruelo D. Looking into laminin receptor: Critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol Rev 2016; 91: 288-310 DOI: 10.1111/brv.12170.
  • 24 Verdolino DV, Thomason HA, Fotticchia A. et al. Wound dressings: Curbing inflammation in chronic wound healing. Emerg Top Life Sci 2021; 5: 523-537
  • 25 Azimi B, Maleki H, Zavagna L. et al. Bio-based electrospun fibers for wound healing. J Funct Biomater 2020; 11: 67 DOI: 10.3390/jfb11030067.
  • 26 Victor P, Sarada D, Ramkumar KM. Pharmacological activation of Nrf2 promotes wound healing. Eur J Pharmacol 2020; 886: 173395 . doi: 10.1016/j.ejphar.2020.173395
  • 27 Raziyeva K, Kim Y, Zharkinbekov Z. et al. Immunology of acute and chronic wound healing. Biomolecules 2021; 11: 700 DOI: 10.3390/biom11050700.
  • 28 Ode Boni BO, Lamboni L, Souho T. et al. Immunomodulation and cellular response to biomaterials: The overriding role of neutrophils in healing. Mater Horizons 2019; 6: 1122-1137
  • 29 Soehnlein O, Steffens S, Hidalgo A. et al. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 2017; 17: 248-261
  • 30 Chester D, Brown AC. The role of biophysical properties of provisional matrix proteins in wound repair. Matrix Biol 2017; 60–61 124-140
  • 31 Chong C, Wang Y, Fathi A. et al. Skin wound repair: Results of a pre-clinical study to evaluate electropsun collagen–elastin–PCL scaffolds as dermal substitutes. Burns 2019; 45: 1639-1648 DOI: 10.1016/j.burns.2019.04.014.
  • 32 Xue M, Jackson CJ. Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring. Adv Wound Care 2015; 4: 119-136 DOI: 10.1089/wound.2013.0485.
  • 33 Urciuolo F, Casale C, Imparato G. et al. Bioengineered skin substitutes: The role of extracellular matrix and vascularization in the healing of deep wounds. J Clin Med 2019; 8: 2083 . doi: 10.3390/jcm8122083
  • 34 Cui N, Hu M, Khalil RA. Biochemical and Biological Attributes of Matrix Metalloproteinases. In: Progress in Molecular Biology and Translational Science. 2017: 1-73
  • 35 Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacol Reports 2017; 69: 393-402
  • 36 Saha S, Buttari B, Panieri E. et al. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020; 25
  • 37 Ahmed SMU, Luo L, Namani A. et al. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta - Mol Basis Dis 2017; 1863: 585-597
  • 38 Lu K, Alcivar AL, Ma J. et al. NRF2 induction supporting breast cancer cell survival is enabled by oxidative stress-induced DPP3-KEAP1 interaction. Cancer Res 2017; 77: 2881-2892 DOI: 10.1158/0008-5472.CAN-16-2204.
  • 39 Dinkova-Kostova AT, Kostov RV, Canning P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch Biochem Biophys 2017; 617: 84-93 DOI: 10.1016/j.abb.2016.08.005.
  • 40 Baird L, Yamamoto M. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol Cell Biol 2020; 40 DOI: 10.1128/mcb.00099-20.
  • 41 Kovac S, Angelova PR, Holmström KM. et al. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta – Gen Subj 2015; 1850: 794-801 DOI: 10.1016/j.bbagen.2014.11.021.
  • 42 Karri VVSR, Kuppusamy G, Talluri SV. et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol 2016; 93: 1519-1529 DOI: 10.1016/j.ijbiomac.2016.05.038.
  • 43 Long M, De La Vega MR, Wen Q. et al. An essential role of NRF2 in diabetic wound healing. Diabetes 2016; 65: 780-793 DOI: 10.2337/db15-0564.
  • 44 Hunter R, Kivlighan KT, Ruyak S. et al. Angiogenesis in Wound Healing following Pharmacological and Toxicological Exposures. Curr Pathobiol Rep 2020; 8: 99-109
  • 45 Sireesh D, Ganesh MR, Dhamodharan U. et al. Role of pterostilbene in attenuating immune mediated devastation of pancreatic beta cells via Nrf2 signaling cascade. J Nutr Biochem 2017; 44: 11-21 DOI: 10.1016/j.jnutbio.2017.02.015.
  • 46 Kahroba H, Ramezani B, Maadi H. et al. The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Res Rev 2021; 65
  • 47 Kuhn J, Sultan DL, Waqas B. et al. Nrf2-activating Therapy Accelerates Wound Healing in a Model of Cutaneous Chronic Venous Insufficiency. Plast Reconstr Surg – Glob Open 2020; DOI: 10.1097/GOX.0000000000003006.
  • 48 Kasai S, Shimizu S, Tatara Y. et al. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 2020; 10: 320 . doi: 10.3390/biom10020320
  • 49 Ruhee RT, Suzuki K. The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: A review of a potential protective phytochemical. Antioxidants 2020; 9: 1-13
  • 50 Li X, Zhang Q, Hou N. et al. Carnosol as a Nrf2 activator improves endothelial barrier function through antioxidative mechanisms. Int J Mol Sci 2019; 20 DOI: 10.3390/ijms20040880.
  • 51 Gao Z, Han Y, Hu Y. et al. Targeting HO-1 by epigallocatechin-3-gallate reduces contrast-induced renal injury via anti-oxidative stress and anti-inflammation pathways. PLoS One 2016; 11 DOI: 10.1371/journal.pone.0149032.
  • 52 Wu W, Peng G, Yang F. et al. Sulforaphane has a therapeutic effect in an atopic dermatitis murine model and activates the Nrf2/HO-1 axis. Mol Med Rep 2019; 20: 1761-1771 DOI: 10.3892/mmr.2019.10405.
  • 53 Al-Saeedi FJ. Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells. Clin Exp Pharmacol Physiol 2021; 48: 389-400 DOI: 10.1111/1440-1681.13432.
  • 54 Bai F, Zhang B, Hou Y. et al. Xanthohumol Analogues as Potent Nrf2 Activators against Oxidative Stress Mediated Damages of PC12 Cells. ACS Chem Neurosci 2019; 10: 2956-2966 DOI: 10.1021/acschemneuro.9b00171.
  • 55 Cianciosi D, Forbes-Hernández TY, Afrin S. et al. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018; 23: 2322 . doi: 10.3390/molecules23092322
  • 56 Zhang J, Zhao X, Zhu H. et al. Apigenin protects against renal tubular epithelial cell injury and oxidative stress by high glucose via regulation of NF-E2-related factor 2 (Nrf2) pathway. Med Sci Monit 2019; 25: 5280-5288 DOI: 10.12659/MSM.915038.
  • 57 Farkhondeh T, Folgado SL, Pourbagher-Shahri AM. et al. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed Pharmacother 2020; 127: 110234 . doi: 10.1016/j.biopha.2020.110234
  • 58 Kurek-Górecka A, Komosinska-Vassev K, Rzepecka-Stojko A. et al. Bee Venom in Wound Healing. Molecules 2020; 26: 148 . doi: 10.3390/molecules26010148
  • 59 Scuderi SA, Ardizzone A, Paterniti I. et al. Antioxidant and anti-inflammatory effect of nrf2 inducer dimethyl fumarate in neurodegenerative diseases. Antioxidants 2020; 9: 1-15
  • 60 Sohrabi F, Dianat M, Badavi M. et al. Gallic acid suppresses inflammation and oxidative stress through modulating Nrf2-HO-1-NF-κB signaling pathways in elastase-induced emphysema in rats. Environ Sci Pollut Res 2021; 28: 56822-56834 DOI: 10.1007/s11356-021-14513-1.
  • 61 Reisman SA, Gahir SS, Lee CYI. et al. Pharmacokinetics and pharmacodynamics of the novel NrF2 activator omaveloxolone in primates. Drug Des Devel Ther 2019; 13: 1259-1270 DOI: 10.2147/DDDT.S193889.
  • 62 Shahcheraghi SH, Salemi F, Peirovi N. et al. Nrf2 regulation by curcumin: Molecular aspects for therapeutic prospects. Molecules 2022; 27: 167 . doi: 10.3390/molecules27010167
  • 63 Mann GE, Rowlands DJ, Li FYL. et al. Activation of endothelial nitric oxide synthase by dietary isoflavones: Role of NO in Nrf2-mediated antioxidant gene expression. Cardiovasc Res 2007; 75: 261-274
  • 64 Oh JY, Choi GE, Lee HJ. et al. 17β-Estradiol protects mesenchymal stem cells against high glucose-induced mitochondrial oxidants production via Nrf2/Sirt3/MnSOD signaling. Free Radic Biol Med 2019; 130: 328-342 DOI: 10.1016/j.freeradbiomed.2018.11.003.
  • 65 Afzali H, Jafari Kashi AH, Momen-Heravi M. et al. The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial. Wound Repair Regen 2019; 27: 277-284 DOI: 10.1111/wrr.12701.
  • 66 Kanda H, Yamawaki K. Bardoxolone methyl: drug development for diabetic kidney disease. Clin Exp Nephrol 2020; 24: 857-864
  • 67 Badhwar R, Mangla B, Neupane YR. et al. Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing. Nanotechnology 2021; 32 DOI: 10.1088/1361-6528/ac2536.
  • 68 Hou Y, Xin M, Li Q. et al. Glycyrrhizin micelle as a genistein nanocarrier: Synergistically promoting corneal epithelial wound healing through blockage of the HMGB1 signaling pathway in diabetic mice. Exp Eye Res 2021; 204 DOI: 10.1016/j.exer.2021.108454.
  • 69 El-Shitany NA, Eid BG. Icariin modulates carrageenan-induced acute inflammation through HO-1/Nrf2 and NF-kB signaling pathways. Biomed Pharmacother 2019; 120 DOI: 10.1016/j.biopha.2019.109567.
  • 70 Horch RE, Ludolph I, Müller-Seubert W. et al. Topical negative-pressure wound therapy: emerging devices and techniques. Expert Rev Med Devices 2020; 17: 139-148
  • 71 Xue M, Zhao R, Lin H. et al. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129: 219-241
  • 72 Hajhosseini B, Kuehlmann BA, Bonham CA. et al. Hyperbaric oxygen therapy: Descriptive review of the technology and current application in chronic wounds. Plast Reconstr Surg – Glob Open. 2020
  • 73 Dixon D, Edmonds M. Managing Diabetic Foot Ulcers: Pharmacotherapy for Wound Healing. Drugs 2021; 81: 29-56
  • 74 Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2019; 146: 344-365
  • 75 Abdelhakim M, Lin X, Ogawa R. The Japanese Experience with Basic Fibroblast Growth Factor in Cutaneous Wound Management and Scar Prevention: A Systematic Review of Clinical and Biological Aspects. Dermatol Ther (Heidelb) 2020; 10: 569-587
  • 76 Garcia-Orue I, Pedraz JL, Hernandez RM. et al. Nanotechnology-based delivery systems to release growth factors and other endogenous molecules for chronic wound healing. J Drug Deliv Sci Technol 2017; 42: 2-17
  • 77 Laiva AL, O’Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med 2018; 12: e296-e312
  • 78 Beiki B, Zeynali B, Seyedjafari E. Fabrication of a three dimensional spongy scaffold using human Wharton’s jelly derived extra cellular matrix for wound healing. Mater Sci Eng C 2017; 78: 627-638 DOI: 10.1016/j.msec.2017.04.074.
  • 79 Eltom A, Zhong G, Muhammad A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv Mater Sci Eng 2019; 2019
  • 80 Abdollahiyan P, Oroojalian F, Mokhtarzadeh A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332: 460-492
  • 81 Daikuara LY, Chen X, Yue Z. et al. 3D Bioprinting Constructs to Facilitate Skin Regeneration. Adv Funct Mater 2022; 32
  • 82 Shang F, Yu Y, Liu S. et al. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact Mater 2021; 6: 666-683
  • 83 Gorecka J, Kostiuk V, Fereydooni A. et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther 2019; 10: 87 . doi: 10.1186/s13287-019-1185-1
  • 84 Motegi Sichiro, Ishikawa O. Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth. J Dermatol Sci 2017; 86: 83-89
  • 85 Kathawala MH, Ng WL, Liu D. et al. Healing of Chronic Wounds: An Update of Recent Developments and Future Possibilities. Tissue Eng - Part B Rev 2019; 25: 429-444