Erfahrungsheilkunde 2024; 73(02): 62-67
DOI: 10.1055/a-2257-6407
Praxis

BHI und andere mitochondriale Parameter zur Diagnostik von mitochondrialen Dysfunktionen

Burkhard Schütz
,
Meike Crecelius

Zusammenfassung

Mitochondriale Dysfunktionen sind ein zunehmendes Problem in der heutigen Gesellschaft. Ob sie als Ursache für verschiedenste (vor allem chronische) Erkrankungen oder als Folge des heutigen westlichen Lebensstils auftreten: Sie haben in jedem Fall große Auswirkungen auf unser Leben. Da Mitochondrien hauptsächlich für die Energieproduktion verantwortlich sind, schlägt sich eine Dysfunktion insbesondere auf die Leistungsfähigkeit nieder. Neben der Energieproduktion übernehmen sie allerdings noch viele weitere bedeutsame Aufgaben und spielen bei fast jedem Stoffwechselvorgang eine wichtige Rolle. Mithilfe des bioenergetischen Gesundheitsindex (BHI) kann die Leistungsfähigkeit der Mitochondrien gemessen werden, wodurch der Zustand der Zellen beurteilt und die richtige Therapie ausgewählt werden kann.

Abstract

Mitochondrial dysfunctions have become an increasing problem in today’s society. Whether they are the cause of various (especially chronic) diseases or occur as a consequence of today’s western lifestyle: In any case, they have a major impact on our lives. As mitochondria are mainly responsible for producing energy, a dysfunction has a particular impact on performance. However, in addition to the production of energy, mitochondria perform many other important tasks and play a significant role in almost every metabolic process. With the help of the bioenergetic health index (BHI), the performance of the mitochondria can be measured, which allows to assess the state of the cells and to select the right therapy.



Publication History

Article published online:
09 April 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders – A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863 (5) 1066-1077
  • 2 Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: Mechanisms and potential targets. Signal Transduct Targ Ther 2023; 8 (1) 333
  • 3 Berg JM, Thymoczko JL, Gregory JGJ. et al. Biochemie. 8. Aufl.. Weinheim: Spektrum; 2018
  • 4 Chacko BK, Kramer PA, Ravi S. et al. The Bioenergetic Health Index: A new concept in mitochondrial translational research. Clin Science 2014; 127 (6) 367-373
  • 5 Chacko BK, Kramer PA, Ravi S. et al. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Laborat Invest 2013; 93 (6) 690-700
  • 6 Chacko BK, Zhi D, Darley-Usmar V. et al. The Bioenergetic Health Index is a sensitive measure of oxidative stress in human monocytes. Redox Biol 2016; 8: 43-50
  • 7 Ardalan A, Smith MD, Jelokhani-Niaraki M. Uncoupling proteins and regulated proton leak in mitochondria. Int J Molec Sci 2022; 23 (3) 1528
  • 8 Xue K, Wu D, Wang Y. et al. The mitochondrial calcium uniporter engages UCP1 to form a thermoporter that promotes thermogenesis. Cell Metabol 2022; 34 (9) 1325-1341
  • 9 Kutsche HS, Schreckenberg R, Schlüter K-D. Uncoupling proteins in striated muscle tissue: Known facts and open questions. Antioxid Redox Sign 2022; 37 (4/6) 324-335
  • 10 Lanni A, Moreno M, Lombardi A. et al. Thyroid hormone and uncoupling proteins. FEBS Letters 2003; 543 (1/3) 5-10
  • 11 Ježek P, Holendová B, Garlid KD. et al. Mitochondrial uncoupling proteins: Subtle regulators of cellular redox signaling. Antioxid Redox Sign 2018; 29 (7) 667-714
  • 12 Zhang J, Wang X, Vikash V. et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev 2016; 2016: 4350965
  • 13 He L, He T, Farrar S. et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Phys Biochem 2017; 44 (2) 532-553
  • 14 Kirkinezos IG, Moraes CT. Reactive oxygen species and mitochondrial diseases. Semin Cell Devel Biol 2001; 12 (6) 449-457
  • 15 Klopstock T, Priglinger C, Yilmaz A. et al. Mitochondriale Erkrankungen. Dtsch Arztebl Int 2021; 118: 741-748
  • 16 Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Ann Rev Genet 2005; 39: 359-407
  • 17 Zeviani M, Di Donato S. Mitochondrial disorders. Brain J Neurol 2004; 127 (10) 2153-2172
  • 18 Gröber U. Arzneimittel und Mikronährstoffe: Medikationsorientierte Supplementierung; mit 54 Tabellen. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2007
  • 19 Austin S, St-Pierre J. PGC1α and mitochondrial metabolism – Emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 2012; 125 (21) 4963-4971
  • 20 He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Molec Sci 2020; 21 (13) 4777
  • 21 Kasai S, Shimizu S, Tatara Y. et al. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules 2020; 10 (2) 320
  • 22 Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdisc Rev Syst Biol Med 2016; 8 (3) 227-241
  • 23 Saha S, Buttari B, Panieri E. et al. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 2020; 25 (22) 5474
  • 24 Rahban M, Habibi-Rezaei M, Mazaheri M. et al. Anti-viral potential and modulation of Nrf2 by Curcumin: Pharmacological implications. Antioxidants 2020; 9 (12) 1228
  • 25 Kim EN, Lim JH, Kim MY. et al. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging 2018; 10 (1) 83-99
  • 26 Sun C, Jin W, Shi H. Oligomeric proanthocyanidins protects A549 cells against H2O2-induced oxidative stress via the Nrf2-ARE pathway. Int J Molecul Med 2017; 39 (6) 1548-1554
  • 27 Wang D, Wang T, Li Z. et al. Green tea polyphenols upregulate the Nrf2 signaling pathway and suppress oxidative stress and inflammation markers in D-galactose-induced liver aging in mice. Front Nutrit 2022; 9: 836112
  • 28 Memme JM, Erlich AT, Phukan G. et al. Exercise and mitochondrial health. J Physiol 2021; 599 (3) 803-817
  • 29 Chowanadisai W, Bauerly KA, Tchaparian E. et al. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 2010; 285 (1) 142-152
  • 30 Duan Y, Li F, Li Y. et al. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2016; 48 (1) 41-51
  • 31 Chen X, Luo X, Chen D. et al. Arginine promotes porcine type I muscle fibres formation through improvement of mitochondrial biogenesis. Br J Nutr 2020; 123 (5) 499-507
  • 32 Averill-Bates DA. The antioxidant glutathione. Vitam Horm 2023; 121: 109-141
  • 33 Zhang Q, Zhao W, Li S. et al. Intermittent hypoxia conditioning: A potential multi-organ protective therapeutic strategy. Int J Med Sci 2023; 20 (12) 1551-1561