Klin Monbl Augenheilkd
DOI: 10.1055/a-2441-7861
Klinische Studie

Evaluation of Tele-Education in Malawi for Detection of Macular Features Using Optical Coherence Tomography

Evaluation des Stellenwerts der Tele-Edukation in Malawi für die Erkennung von Makulabefunden anhand der optischen Kohärenztomografie
Thokozani Zungu
1   Ophthalmology, Kamuzu University of Health Sciences, Blantyre, Malawi
2   Ophthalmology, Queen Elizabeth Central Hospital, Blantyre, Malawi
,
Shaffi Mdala
1   Ophthalmology, Kamuzu University of Health Sciences, Blantyre, Malawi
2   Ophthalmology, Queen Elizabeth Central Hospital, Blantyre, Malawi
,
Halima Sumayya Twabi
3   School of Natural and Applied Sciences, Department of Mathematical Sciences, University of Malawi, Zomba, Malawi
,
Petros Kayange
1   Ophthalmology, Kamuzu University of Health Sciences, Blantyre, Malawi
2   Ophthalmology, Queen Elizabeth Central Hospital, Blantyre, Malawi
,
Faik Gelisken
4   Department of Ophthalmology, University Hospital Tübingen, Germany
› Author Affiliations

Abstract

Purpose The study aimed to assess the reliability of tele-education in training a Malawian ophthalmology resident to interpret optical coherence tomography (OCT) images of patients with macular conditions.

Methods This was a retrospective analysis of 1000 macula-centered OCT image series from 1000 eyes of 1000 consecutive patients from Malawi, which involved initial interpretation by a German retina specialist (observer 1) (T0). Observer 1 then trained a Malawian resident (observer 2) via email, and observer 2 independently interpreted images at T1, followed by face-to-face training in Malawi and reinterpretation at T2 and T3 (3-month intervals). The observers had to recognize, on OCT imaging, the normal macular structure, vitreofoveal traction (VFT), absent fovea depression (FD), epiretinal membrane (ERM), lamellar macular hole (LMH), full-thickness macular hole (FTMH), foveoschisis, intraretinal pseudocyst (IPC), intraretinal hyperreflective foci (IHF), subretinal fluid (SRF), pigment epithelial detachment (PED), and drusen. Cohenʼs Kappa statistic measured inter-observer agreement.

Results At T1 post-tele-education, almost perfect agreement (κ = 0.86; 99.6% agreement) was observed for FTMH. Agreement remained high at T2 post-face-to-face training (κ = 0.9; 99.7%) and decreased substantially at T3 (κ = 0.77; 99.4%). Following tele-education (T1), substantial agreement (κ range: 0.77 – 0.86) was found for IPC, PED, IHF, and FD, while ERM showed fair agreement (κ = 0.33; 81%). Face-to-face training notably improved agreement for SRF (T1 κ = 0.6, T2 κ = 0.63), LMH (T1 κ = 0.6, T2 κ = 0.67), and normal macular structure (T1 κ = 0.6, T2 κ = 0.62).

Conclusion There was good agreement in the detection of the majority of the OCT features seen in most of the macular pathologies following training through tele-education and the results did not change significantly following face-to-face teaching. Tele-education could reliably complement training in vitreoretinal diagnostic skills in resource-limited settings.

Zusammenfassung

Ziel In den vielen afrikanischen Ländern ist die Anzahl der Netzhautspezialisten extrem niedrig. In dieser Studie wurde die Effektivität der Tele-Edukation eines malawischen Arztes in der Facharztausbildung für Augenheilkunde bez. der Interpretation von OCT-Aufnahmen von Patienten mit Makulopathien analysiert.

Methode Bei der retrospektiven Analyse wurden 1000 OCT-Bilder aus dem Queen Elizabeth Central Hospital (QECH) in Malawi durch einen deutschen Netzhautspezialisten ohne Beteiligung des malawischen Beobachters interpretiert (Beobachter 1; Zeitpunkt 0, T0). Anschließend schulte Beobachter 1 einen malawischen Assistenzarzt der Augenheilkunde (Beobachter 2, QECH) per E-Mail. Beobachter 2 interpretierte die Bilder unabhängig von T1, gefolgt von einem Präsenztraining in Malawi und einer Neuinterpretation bei T2 und T3 (in dreimonatigen Abständen). Die Beobachter mussten auf den OCT-Bildern eine physiologische Makulastruktur, eine vitreofoveale Traktion (VFT), ein Fehlen der Foveadepression (FD), eine epiretinale Membran (ERM), ein lamelläres Makulaforamen (LMH), ein durchgreifendes Makulaforamen (FTMH) und eine Foveoschisis sowie intraretinale Pseudozysten (IPC), intraretinale hyperreflektive Foci (IHF), subretinale Flüssigkeit (SRF), eine Pigmentepithelabhebung (PED) und Drusen erkennen. Die Übereinstimmung zwischen den Beobachtern wurde mittels Cohens Kappa-Statistik gemessen.

Ergebnisse Zum Zeitpunkt T1 nach der Tele-Edukation wurde eine nahezu perfekte Übereinstimmung (κ = 0,86; 99,6%) für FTMH beobachtet. Die Übereinstimmung blieb für die FTMH bei T2 hoch (κ = 0,9; 99,7%), sank jedoch bei T3 ab (κ = 0,77; 99,4%). Nach der Tele-Edukation (T1) wurde eine Übereinstimmung (κ-Bereich: 0,77 – 0,86) für IRP, PED, IHF und FD gefunden, während ERM eine Übereinstimmung von (κ = 0,33; 81%) zeigte. Das Präsenztraining verbesserte die Übereinstimmung bei SRF, LMH und normalen topografischen Befunden deutlich.

Schlussfolgerung Es zeigte sich eine gute Übereinstimmung bei der Erkennung der meisten OCT-Befunde nach dem Training durch Tele-Edukation. Die Ergebnisse veränderten sich nach dem Präsenzunterricht nicht signifikant. Die Tele-Edukation könnte die diagnostischen Fähigkeiten der Ärzte in der Facharztausbildung in Ländern mit geringen Einkommen schnell und effektiv unterstützen.

Conclusion

Already known:

  • Tele-education is an increasingly used tool in the field of medical education, offering a dynamic platform for learning and collaboration.

  • Tele-education contributes to the transfer and maintenance of skills for grading fundus photographs in DR screening programs.

Newly described:

  • Tele-education has a role in the transfer of OCT interpretation skills from high-resource settings to low-resource settings.

  • Tele-education is a viable tool in teaching the detection and interpretation of OCT features of DR that are increasingly being recognized as noninvasive biomarkers of DR.

Supporting Information



Publication History

Received: 05 August 2024

Accepted: 14 October 2024

Article published online:
23 January 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Thapa R, Khanal S, Tan HS. et al. Prevalence, Pattern and Risk Factors of Retinal Diseases Among an Elderly Population in Nepal: The Bhaktapur Retina Study. Clin Ophthalmol 2020; 14: 2109-2118
  • 2 Nirmalan PK, Katz J, Robin AL. Prevalence of vitreoretinal disorders in a rural population of southern India: the Aravind Comprehensive Eye Study. Arch Ophthalmol 2004; 122: 581-586
  • 3 Nazimul H, Rohit K, Anjili H. Trend of retinal diseases in developing countries. Expert Rev Ophthalmol 2008; 3: 43-50
  • 4 Javadikasgari H, Soltesz EG, Gillinov AM. Chapter 28 – Surgery for Atrial Fibrillation. In: Javadikasgari H, Soltesz EG, Gillinov AM Atlas of Cardiac Surgical Techniques. 2nd ed.. Amsterdam: Elsevier; 2019: 479-488
  • 5 Burgess PI, MacCormick IJC, Harding SP. et al. Epidemiology of diabetic retinopathy and maculopathy in Africa: a systematic review. Diabet Med 2013; 30: 399-412
  • 6 Eze B, Uche J, Shiweobi J. The burden and spectrum of vitreo-retinal diseases among ophthalmic outpatients in a resource-deficient tertiary eye care setting in South-eastern Nigeria. Middle East Afr J Ophthalmol 2010; 17: 246-249
  • 7 Onakpoya O, Olateju S, Ajayi I. Retinal diseases in a tertiary hospital: the need for establishment of a vitreo-retinal care unit. J Natl Med Assoc 2008; 100: 1286-1289
  • 8 Nwosu S. Prevalence and pattern of retinal diseases at the Guinness Eye Hospital, Onitsha, Nigeria. Ophthalmic Epidemiol 2000; 7: 41-48
  • 9 Teshome T, Melaku S, Bayu S. Pattern of retinal diseases at a teaching eye department, Addis Ababa, Ethiopia. Ethiop Med J 2004; 42: 186-193
  • 10 Dean WH, Buchan JC, Gichuhi S. et al. Ophthalmology training in sub-Saharan Africa: a scoping review. Eye (Lond) 2021; 35: 1066-1083
  • 11 Dodoo JE, Al-Samarraie H, Alsswey A. The development of telemedicine programs in Sub-Saharan Africa: Progress and associated challenges. Health Technol (Berl) 2022; 12: 33-46
  • 12 Sood S, Mbarika V, Jugoo S. et al. What is telemedicine? A collection of 104 peer-reviewed perspectives and theoretical underpinnings. Telemed J E-Health 2007; 13: 573-590
  • 13 Harendza S. Re: Evaluation of a telemedicine-based training for final-year medical students including simulated patient consultations, documentation, and case presentation. GMS J Med Educ 2021; 38: Doc113
  • 14 Al-Khaled T, Acaba-Berrocal L, Cole E. et al. Digital Education in Ophthalmology. Asia Pac J Ophthalmol (Phila) 2022; 11: 267-272
  • 15 Aziz K, Sherif NA, Meshkin RS. et al. Telemedicine Curriculum in an Ophthalmology Residency Program. J Acad Ophthalmol (2017) 2022; 14: e93-e102
  • 16 International Centre for Eye Health, London School of Hygiene & Tropical Medicine. Online training for DR grading. https://www.cehjournal.org/news/online-training-for-dr-grading/ Accessed: 10.07.2024
  • 17 Landis JR, Koch GG. The measurement of observer agreement. JSTOR 1977; 33: 159-174
  • 18 Parikh D, Armstrong G, Liou V. et al. Advances in Telemedicine in Ophthalmology. Semin Ophthalmol 2020; 35: 210-215
  • 19 Vujosevic S, Simó R. Local and Systemic Inflammatory Biomarkers of Diabetic Retinopathy: An Integrative Approach. Invest Ophthalmol Vis Sci 2017; 58: BIO68-BIO75
  • 20 Markan A, Agarwal A, Arora A. et al. Novel imaging biomarkers in diabetic retinopathy and diabetic macular edema. Ther Adv Ophthalmol 2020; 12: 1-16
  • 21 Vujosevic S, Bini S, Torresin T. et al. Hyperreflective Retinal Spots in Normal and Diabetic Eyes: B-Scan and En Face Spectral Domain Optical Coherence Tomography Evaluation. Retina 2017; 95: 464-471
  • 22 Vujosevic S, Berton M, Bini S. et al. Hyperreflective retinal spots and visual function after anti-vascular endothelial growth factor treatment in center-involving diabetic macular edema. Retina 2016; 36: 1298-1308
  • 23 Vujosevic S, Torresin T, Bini S. et al. Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular oedema. Acta Ophthalmol 2017; 95: 464-471
  • 24 Sonoda S, Sakamoto T, Yamashita T. et al. Retinal morphologic changes and concentrations of cytokines in eyes with diabetic macular EDEMA. Retina 2014; 34: 741-748
  • 25 Chatziralli IP, Sergentanis TN, Sivaprasad S. Hyperreflective foci as an independent visual outcome predictor in macular EDEMA due to retinal vascular diseases treated with intravitreal dexamethasone or ranibizumab. Retina 2016; 36: 2319-2328
  • 26 Resnikoff S, Lansingh VC, Washburn L. et al. Estimated number of ophthalmologists worldwide (International Council of Ophthalmology update): will we meet the needs?. Br J Ophthalmol 2020; 104: 588-592
  • 27 International Agency for the Prevention of Blindness (IAPB). Vision loss could be treated in one billion people worldwide. https://www.iapb.org/news/the-lancet-global-health-vision-loss-could-be-treated-in-one-billion-people-worldwide/ Accessed: 17.09.2024
  • 28 Chan WH, Shilling JS, Michaelides M. Optical coherence tomography: an assessment of current training across all levels of seniority in 8 ophthalmic units in the United Kingdom. BMC Ophthalmol 2006; 6: 33