RSS-Feed abonnieren
DOI: 10.1055/a-2514-0482
Kombinierte bewegungs- und ernährungstherapeutische Versorgung mit Fokus auf Muskelmasse und -funktion bei Krebspatient*innen mit Gewichtsverlust
Combined exercise and nutrition care focusing on muscle mass and muscle function in cancer patients with weight lossAutoren
Zusammenfassung
Diese narrative Übersicht thematisiert die klinische Relevanz der Reduktion von Muskelmasse und -funktion bei onkologischen Patient*innen mit Gewichtsverlust. Diagnostische Methoden und leitlinienbasierte ernährungs- und bewegungstherapeutische Maßnahmen sowie die aktuelle Evidenz für die kombinierte Anwendung von Ernährungs- und Bewegungsinterventionen werden zusammengefasst und die Implementierung in die Patientenversorgung diskutiert. Unabhängig vom Gewichtsverlust sind eine niedrige Muskelmasse und -funktion bei onkologischen Patient*innen mit schlechteren klinischen Outcomes wie einer schlechteren Prognose und geringeren Therapietoleranz assoziiert. Routinemäßige Screenings des Gewichtsverlaufs, der Nahrungszufuhr und des Muskelstatus sollten zur Früherkennung von Mangelernährung, Sarkopenie und Kachexie bei allen onkologischen Patient*innen implementiert werden. Assessments sollten sowohl das Ernährungs- als auch Bewegungsverhalten berücksichtigen und die Messung der Körperzusammensetzung und Muskelfunktion einschließen. Bewegungs- und Ernährungsinterventionen können synergistisch anabole Prozesse unterstützen und sind am effektivsten, wenn sie frühzeitig initiiert werden. Eine Kombination aus energie- und proteinreicher Ernährung mit progressivem moderat- bis hoch-intensivem Krafttraining kann zur Stabilisierung bzw. Steigerung von Körpergewicht, Muskelmasse und Muskelfunktion beitragen. Die Supplementierung bestimmter Nährstoffe wie Omega-3-Fettsäuren oder innovative Trainingsmethoden wie hoch-intensives Intervalltraining oder elektrische Muskelstimulation könnten zusätzliche therapeutische Ansätze darstellen, jedoch bedarf es weiterer Forschung. Die Zusammenarbeit in einem interprofessionellen Team und flächendeckende Therapieangebote sind entscheidend für eine patientenzentrierte ernährungs- und bewegungstherapeutische Versorgung.
Abstract
This narrative review addresses the clinical relevance of loss of muscle mass and function in cancer patients with weight loss. Diagnostic methods and guideline-based nutrition and exercise interventions as well as the current evidence for the combined use of nutrition and exercise interventions are summarized and implementation in patient care is discussed. Regardless of weight loss, low muscle mass and function are associated with poor clinical outcomes such as poor prognosis and reduced treatment tolerance in cancer patients. Routine screening of weight trajectory, nutritional intake and muscle status should be implemented for early detection of malnutrition, sarcopenia and cachexia in all cancer patients. Assessments should consider both dietary and exercise behavior and include measurements of body composition and muscle function. Exercise and nutritional interventions can synergistically support anabolic processes and are most effective when initiated early. A combination of a high-energy, high-protein diet with progressive moderate- to high-intensity resistance training can help stabilize or increase body weight, muscle mass and muscle function. Supplementation of certain nutrients such as omega-3 fatty acids or innovative training methods such as high-intensity interval training or electrical muscle stimulation could represent additional therapeutic approaches, but further research is needed. Collaboration in a multidisciplinary team and comprehensive therapy services are crucial for patient-centered nutrition and exercise supportive care.
Publikationsverlauf
Eingereicht: 30. April 2024
Angenommen: 28. Oktober 2024
Artikel online veröffentlicht:
05. Dezember 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Arends J, Baracos VE, Bertz H. et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin Nutr 2017; 36: 1187-1196
- 2 Bossi P, Delrio P, Mascheroni A. et al. The Spectrum of Malnutrition/Cachexia/Sarcopenia in Oncology According to Different Cancer Types and Settings: A Narrative Review. Nutrients 2021; 13
- 3 Arends J, Strasser F, Gonella S. et al. Cancer cachexia in adult patients: ESMO Clinical Practice Guidelines. ESMO Open 2021; 6: 100092
- 4 Cormie P, Atkinson M, Bucci L. et al. Clinical Oncology Society of Australia position statement on exercise in cancer care. Med J Aust 2018; 209: 184-187
- 5 Ryan AM, Sullivan ES. Impact of musculoskeletal degradation on cancer outcomes and strategies for management in clinical practice. Proc Nutr Soc 2021; 80: 73-91
- 6 Solheim TS, Vagnildhaug OM, Laird BJ. et al. Combining optimal nutrition and exercise in a multimodal approach for patients with active cancer and risk for losing weight: Rationale and practical approach. Nutrition 2019; 67-68: 110541
- 7 Cederholm T, Jensen GL, Correia MITD. et al. GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community. Clin Nutr 2019; 38: 1-9
- 8 Fearon K, Strasser F, Anker SD. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011; 12: 489-495
- 9 Cruz-Jentoft AJ, Bahat G, Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48: 16-31
- 10 Christensen JF, Jones LW, Andersen JL. et al. Muscle dysfunction in cancer patients. Ann Oncol 2014; 25: 947-958
- 11 Yancik R. Population aging and cancer: a cross-national concern. Cancer J 2005; 11: 437-441
- 12 Prado CM, Laviano A, Gillis C. et al. Examining guidelines and new evidence in oncology nutrition: a position paper on gaps and opportunities in multimodal approaches to improve patient care. Support Care Cancer 2022; 30: 3073-3083
- 13 Arends J, Muscaritoli M, Anker SD. et al. Overcoming barriers to timely recognition and treatment of cancer cachexia: Sharing Progress in Cancer Care Task Force Position Paper and Call to Action. Crit Rev Oncol Hematol 2023; 185: 103965
- 14 Haehling von S, Anker SD. Prevalence, incidence and clinical impact of cachexia: facts and numbers-update 2014. J Cachexia Sarcopenia Muscle 2014; 5: 261-263
- 15 Mavropalias G, Sim M, Taaffe DR. et al. Exercise medicine for cancer cachexia: targeted exercise to counteract mechanisms and treatment side effects. J Cancer Res Clin Oncol 2022; 148: 1389-1406
- 16 Antoun S, Raynard B. Muscle protein anabolism in advanced cancer patients: response to protein and amino acids support, and to physical activity. Ann Oncol 2018; 29: ii10-ii17
- 17 Daly LE, Prado CM, Ryan AM. A window beneath the skin: how computed tomography assessment of body composition can assist in the identification of hidden wasting conditions in oncology that profoundly impact outcomes. Proc Nutr Soc 2018; 77: 135-151
- 18 Landi F, Camprubi-Robles M, Bear DE. et al. Muscle loss: The new malnutrition challenge in clinical practice. Clin Nutr 2019; 38: 2113-2120
- 19 Cereda E, Tancredi R, Klersy C. et al. Muscle weakness as an additional criterion for grading sarcopenia-related prognosis in patients with cancer. Cancer Med 2022; 11: 308-316
- 20 Nakano J, Fukushima T, Tanaka T. et al. Physical function predicts mortality in patients with cancer: a systematic review and meta-analysis of observational studies. Support Care Cancer 2021; 29: 5623-5634
- 21 Verweij NM, Schiphorst AHW, Pronk A. et al. Physical performance measures for predicting outcome in cancer patients: a systematic review. Acta Oncol 2016; 55: 1386-1391
- 22 Arends J, Bertz H, Bischoff SC. et al. S3-Guideline of the German Society for Nutrtional Medicine (DGEM) in Cooperation with the DGHO, the ASORS and the AKE: Clinical Nutrition in Oncology. Aktuel Ernahrungsmed 2015; e1-e74
- 23 August DA, Huhmann MB. A.S.P.E.N. clinical guidelines: nutrition support therapy during adult anticancer treatment and in hematopoietic cell transplantation. JPEN J Parenter Enteral Nutr 2009; 33: 472-500
- 24 Muscaritoli M, Arends J, Bachmann P. et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clin Nutr 2021; 40: 2898-2913
- 25 Deutz NEP, Ashurst I, Ballesteros MD. et al. The Underappreciated Role of Low Muscle Mass in the Management of Malnutrition. J Am Med Dir Assoc 2019; 20: 22-27
- 26 Roeland EJ, Bohlke K, Baracos VE. et al. Management of Cancer Cachexia: ASCO Guideline. JCO 2020; 38: 2438-2453
- 27 McDonald J, Sayers J, Anker SD. et al. Physical function endpoints in cancer cachexia clinical trials: Systematic Review 1 of the cachexia endpoints series. J Cachexia Sarcopenia Muscle 2023; 14: 1932-1948
- 28 Stene GB, Balstad TR, Leer ASM. et al. Deterioration in Muscle Mass and Physical Function Differs According to Weight Loss History in Cancer Cachexia. Cancers 2019; 11
- 29 Cheung C, Boocock E, Grande AJ. et al. Exercise-based interventions for cancer cachexia: A systematic review of randomised and non-randomised controlled trials. Asia Pac J Oncol Nurs 2023; 10: 100335
- 30 Haran PH, Rivas DA, Fielding RA. Role and potential mechanisms of anabolic resistance in sarcopenia. J Cachexia Sarcopenia Muscle 2012; 3: 157-162
- 31 Reckman GAR, Gomes-Neto AW, Vonk RJ. et al. Anabolic competence: Assessment and integration of the multimodality interventional approach in disease-related malnutrition. Nutrition 2019; 65: 179-184
- 32 Valentini L, Volkert D, Schütz T. et al. Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM): DGEM-Terminologie in der Klinischen Ernährung. Aktuel Ernahrungsmed 2013; 38: 97-111
- 33 Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A. et al. Nutritional and Exercise Interventions in Cancer-Related Cachexia: An Extensive Narrative Review. Int J Environ Res Public Health 2022; 19
- 34 Ceglia L. Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr Metab Care 2009; 12: 628-633
- 35 Akutsu T, Kitamura H, Himeiwa S. et al. Vitamin D and Cancer Survival: Does Vitamin D Supplementation Improve the Survival of Patients with Cancer?. Curr Oncol Rep 2020; 22: 62
- 36 Prokopidis K, Giannos P, Katsikas Triantafyllidis K. et al. Effect of vitamin D monotherapy on indices of sarcopenia in community-dwelling older adults: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2022; 13: 1642-1652
- 37 Widajanti N, Hadi U, Soelistijo SA. et al. The Effect of Vitamin D Supplementation to Parameter of Sarcopenia in Elderly People: a Systematic Review and Meta-Analysis. Can Geriatr J 2024; 27: 63-75
- 38 Campbell KL, Winters-Stone KM, Wiskemann J. et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med Sci Sports Exerc 2019; 51: 2375-2390
- 39 Zoth N, Böhlke L, Theurich S. et al. Körperliche Aktivität und Bewegungstherapie in der Onkologie. Inn Med (Heidelb) 2023; 64: 19-24
- 40 Baumann FT, Jensen W, Berling-Ernst A. et al. Exercise Therapy in Oncology. Dtsch Arztebl Int 2024; 121: 331-337
- 41 Grande AJ, Silva V, Sawaris Neto L. et al. Exercise for cancer cachexia in adults. Cochrane Database Syst Rev 2021; 3: CD010804
- 42 Avancini A, Trestini I, Tregnago D. et al. A multimodal approach to cancer-related cachexia: from theory to practice. Expert Rev Anticancer Ther 2021; 21: 819-826
- 43 Niels T, Baumann FT. Bewegung und Training als wirksame Supportivtherapie. Im Fokus Onkologie 2019; 22: 47-50
- 44 Grgic J, Mcllvenna LC, Fyfe JJ. et al. Does Aerobic Training Promote the Same Skeletal Muscle Hypertrophy as Resistance Training? A Systematic Review and Meta-Analysis. Sports Med 2019; 49: 233-254
- 45 Wilson JM, Marin PJ, Rhea MR. et al. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res 2012; 26: 2293-2307
- 46 Isanejad A, Nazari S, Gharib B. et al. Comparison of the effects of high-intensity interval and moderate-intensity continuous training on inflammatory markers, cardiorespiratory fitness, and quality of life in breast cancer patients. J Sport Health Sci 2023; 12: 674-689
- 47 Neuendorf T, Haase R, Schroeder S. et al. Effects of high-intensity interval training on functional performance and maximal oxygen uptake in comparison with moderate intensity continuous training in cancer patients: a systematic review and meta-analysis. Support Care Cancer 2023; 31: 643
- 48 Wallen MP, Hennessy D, Brown S. et al. High-intensity interval training improves cardiorespiratory fitness in cancer patients and survivors: A meta-analysis. Eur J Cancer Care (Engl) 2020; 29: e13267
- 49 Leal LG, Lopes MA, Peres SB. et al. Exercise Training as Therapeutic Approach in Cancer Cachexia: A Review of Potential Anti-inflammatory Effect on Muscle Wasting. Front Physiol 2020; 11: 570170
- 50 Lee J. The effects of resistance training on muscular strength and hypertrophy in elderly cancer patients: A systematic review and meta-analysis. J Sport Health Sci 2022; 11: 194-201
- 51 Ormel HL, van der Schoot GGF, Sluiter WJ. et al. Predictors of adherence to exercise interventions during and after cancer treatment: A systematic review. Psychooncology 2018; 27: 713-724
- 52 Lazzari de N, Niels T, Tewes M. et al. A Systematic Review of the Safety, Feasibility and Benefits of Exercise for Patients with Advanced Cancer. Cancers 2021; 13
- 53 Herranz-Gómez A, Cuenca-Martínez F, Suso-Martí L. et al. Effectiveness of HIIT in patients with cancer or cancer survivors: An umbrella and mapping review with meta-meta-analysis. Scand J Med Sci Sports 2022; 32: 1522-1549
- 54 Wiskemann J, Clauss D, Tjaden C. et al. Progressive Resistance Training to Impact Physical Fitness and Body Weight in Pancreatic Cancer Patients: A Randomized Controlled Trial. Pancreas 2019; 48: 257-266
- 55 Storck LJ, Uster A, Gafner L. et al. Effect of combined therapies including nutrition and physical exercise in advanced cancer patients: A pooled analysis. Front Nutr 2023; 10: 1063279
- 56 Baguley BJ, Dalla Via J, Fraser SF. et al. Effectiveness of combined nutrition and exercise interventions on body weight, lean mass, and fat mass in adults diagnosed with cancer: a systematic review and meta-analysis. Nutr Rev 2023; 81: 625-646
- 57 Bye A, Sandmael JA, Stene GB. et al. Exercise and Nutrition Interventions in Patients with Head and Neck Cancer during Curative Treatment: A Systematic Review and Meta-Analysis. Nutrients 2020; 12
- 58 Sadeghi F, Mockler D, Guinan EM. et al. The Effectiveness of Nutrition Interventions Combined with Exercise in Upper Gastrointestinal Cancers: A Systematic Review. Nutrients 2021; 13: 2842
- 59 Barnes O, Wilson RL, Gonzalo-Encabo P. et al. The Effect of Exercise and Nutritional Interventions on Body Composition in Patients with Advanced or Metastatic Cancer: A Systematic Review. Nutrients 2022; 14
- 60 Mikkelsen MK, Lund CM, Vinther A. et al. Effects of a 12-Week Multimodal Exercise Intervention Among Older Patients with Advanced Cancer: Results from a Randomized Controlled Trial. Oncologist 2022; 27: 67-78
- 61 Storck LJ, Ruehlin M, Gaeumann S. et al. Effect of a leucine-rich supplement in combination with nutrition and physical exercise in advanced cancer patients: A randomized controlled intervention trial. Clin Nutr 2020; 39: 3637-3644
- 62 Schink K, Herrmann HJ, Schwappacher R. et al. Effects of whole-body electromyostimulation combined with individualized nutritional support on body composition in patients with advanced cancer: a controlled pilot trial. BMC Cancer 2018; 18: 886
- 63 Schink K, Reljic D, Herrmann HJ. et al. Whole-Body Electromyostimulation Combined With Individualized Nutritional Support Improves Body Composition in Patients With Hematological Malignancies - A Pilot Study. Front Physiol 2018; 9: 1808
- 64 Kemmler W, Fröhlich M, Eifler C. Ganzkörper-Elektromyostimulation. Effekte, Limitationen, Perspektiven einer innovativen Trainingsmethode. essentials. Berlin, Heidelberg: Springer Spektrum; 2022.
- 65 Reljic D, Herrmann HJ, Zopf Y. Commentary: Revised contraindications for the use of non-medical WB-electromyostimulation. Evidence-based German consensus recommendations. Front Sports Act Living 2024; 6: 1425233
- 66 Stengel von S, Fröhlich M, Ludwig O. et al. Revised contraindications for the use of non-medical WB-electromyostimulation. Evidence-based German consensus recommendations. Front Sports Act Living 2024; 6: 1371723
- 67 Erickson N, Sullivan ES, Kalliostra M. et al. Nutrition care is an integral part of patient-centred medical care: a European consensus. Med Oncol 2023; 40: 112
- 68 Solheim TS, Laird BJA, Balstad TR. et al. A randomized phase II feasibility trial of a multimodal intervention for the management of cachexia in lung and pancreatic cancer. J Cachexia Sarcopenia Muscle 2017; 8: 778-788
- 69 Ziel Regelversorgung: Sport- und Bewegungsangebote bei Krebs. springerpflege.de, 07.08.2023. Im Internet. https://www.springerpflege.de/onkologische-reha/ziel-regelversorgung-sport-und-bewegungsangebote-bei-krebs/25894822 Stand: 29.03.2024
