Journal of Pediatric Neurology 2015; 13(04): 198-207
DOI: 10.1055/s-0035-1558866
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Movement Disorders in Cerebral Palsy

Terence D. Sanger
1   Department of Biomedical Engineering, Biokinesiology, and Child Neurology, University of Southern California, Children's Hospital of Los Angeles, Los Angeles, United States
› Institutsangaben
Weitere Informationen

Publikationsverlauf

17. März 2015

18. März 2015

Publikationsdatum:
12. August 2015 (online)

Abstract

Children with cerebral palsy often have a mixture of multiple disorders of movement that interact with each other and with the developmental process. While this complicates the process of symptomatic diagnosis, there is nevertheless a close link between clinical impairments and the underlying etiology and distribution of injury. I describe the major categories of impairment, including hypertonic symptoms, hyperkinetic symptoms, and negative signs. Within each category, there are specific features that are helpful for distinguishing between multiple impairments that affect motor function. Identification of the particular impairments affecting each child is essential to guide appropriate medical and rehabilitation interventions.

 
  • References

  • 1 Rosenbaum P, Paneth N, Leviton A , et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 2007; 109: 8-14
  • 2 Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol 2002; 44 (9) 633-640
  • 3 Sanger TD, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW ; Task Force on Childhood Motor Disorders. Classification and definition of disorders causing hypertonia in childhood. Pediatrics 2003; 111 (1) e89-e97
  • 4 Volpe JJ. Neurology of the Newborn. Philadelphia, PA: WB Saunders; 2000
  • 5 Sanger T. Hyperkinetic disorders in childhood. In: Suchowersky O, Comella C, , eds. Hyperkinetic Movement Disorders. Humana Press; 2012: 221-258
  • 6 Mittendorf R, Kuban K, Pryde PG, Gianopoulos JG, Yousefzadeh D. Antenatal risk factors associated with the development of lenticulostriate vasculopathy (LSV) in neonates. J Perinatol 2005; 25 (2) 101-107
  • 7 Sisman J, Logan JW, Westra SJ, Allred EN, Leviton A. Lenticulostriate vasculopathy in extremely low gestational age newborns: Inter-rater variability of cranial ultrasound readings, antecedents and postnatal characteristics. J Pediatr Neurol 2014; 12 (4) 183-193
  • 8 Korzeniewski SJ, Birbeck G, DeLano MC, Potchen MJ, Paneth N. A systematic review of neuroimaging for cerebral palsy. J Child Neurol 2008; 23 (2) 216-227
  • 9 Miller G, Cala LA. Ataxic cerebral palsy—clinico-radiologic correlations. Neuropediatrics 1989; 20 (2) 84-89
  • 10 Back SA, Han BH, Luo NL , et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 2002; 22 (2) 455-463
  • 11 Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 1998; 18 (16) 6241-6253
  • 12 Buser JR, Maire J, Riddle A , et al. Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 2012; 71 (1) 93-109
  • 13 Sanger TD. Pathophysiology of pediatric movement disorders. J Child Neurol 2003; 18 (Suppl. 01) S9-S24
  • 14 Sanger TD, Chen D, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW ; Taskforce on Childhood Motor Disorders. Definition and classification of negative motor signs in childhood. Pediatrics 2006; 118 (5) 2159-2167
  • 15 Sanger TD, Chen D, Fehlings DL , et al. Definition and classification of hyperkinetic movements in childhood. Mov Disord 2010; 25 (11) 1538-1549
  • 16 Rymer WZ, Katz RT. Mechanisms of spastic hypertonia. Phys Med Rehabil 1994; 8 (3) 441-451
  • 17 Heckmann CJ, Gorassini MA, Bennett DJ. Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle Nerve 2005; 31 (2) 135-156
  • 18 Heckman CJ, Johnson M, Mottram C, Schuster J. Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 2008; 14 (3) 264-275
  • 19 Levin MF, Feldman AG. The role of stretch reflex threshold regulation in normal and impaired motor control. Brain Res 1994; 657 (1-2) 23-30
  • 20 Jobin A, Levin MF. Regulation of stretch reflex threshold in elbow flexors in children with cerebral palsy: a new measure of spasticity. Dev Med Child Neurol 2000; 42 (8) 531-540
  • 21 Rodda J, Graham HK. Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm. Eur J Neurol 2001; 8 (Suppl. 05) 98-108
  • 22 Wren TA, Rethlefsen S, Kay RM. Prevalence of specific gait abnormalities in children with cerebral palsy: influence of cerebral palsy subtype, age, and previous surgery. J Pediatr Orthop 2005; 25 (1) 79-83
  • 23 Rodda JM, Graham HK, Carson L, Galea MP, Wolfe R. Sagittal gait patterns in spastic diplegia. J Bone Joint Surg Br 2004; 86 (2) 251-258
  • 24 Smith LR, Lee KS, Ward SR, Chambers HG, Lieber RL. Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length. J Physiol 2011; 589 (Pt 10) 2625-2639
  • 25 Barrett RS, Lichtwark GA. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol 2010; 52 (9) 794-804
  • 26 Brooks PL, Peever JH. Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis. J Neurosci 2012; 32 (29) 9785-9795
  • 27 Sheean G. The pathophysiology of spasticity. Eur J Neurol 2002; 9 (Suppl. 01) 3-9 , 53–61
  • 28 Pandyan AD, Gregoric M, Barnes MP , et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil 2005; 27 (1-2) 2-6
  • 29 Brown P. Pathophysiology of spasticity. J Neurol Neurosurg Psychiatry 1994; 57 (7) 773-777
  • 30 Orlovsky GN. The effect of different descending systems on flexor and extensor activity during locomotion. Brain Res 1972; 40 (2) 359-371
  • 31 Melhem ER, Hoon Jr AH, Ferrucci Jr JT , et al. Periventricular leukomalacia: relationship between lateral ventricular volume on brain MR images and severity of cognitive and motor impairment. Radiology 2000; 214 (1) 199-204
  • 32 Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 2001; 50 (5) 553-562
  • 33 Rogers B, Msall M, Owens T , et al. Cystic periventricular leukomalacia and type of cerebral palsy in preterm infants. J Pediatr 1994; 125 (1) S1-S8
  • 34 Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA. The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain 2008; 131 (Pt 9) 2499-2509
  • 35 Neychev VK, Gross RE, Lehéricy S, Hess EJ, Jinnah HA. The functional neuroanatomy of dystonia. Neurobiol Dis 2011; 42 (2) 185-201
  • 36 van Doornik J, Kukke S, Sanger TD. Hypertonia in childhood secondary dystonia due to cerebral palsy is associated with reflex muscle activation. Mov Disord 2009; 24 (7) 965-971
  • 37 Kukke SN, Sanger TD. Contributors to excess antagonist activity during movement in children with secondary dystonia due to cerebral palsy. J Neurophysiol 2011; 105 (5) 2100-2107
  • 38 Jones MW, Morgan E, Shelton JE, Thorogood C. Cerebral palsy: introduction and diagnosis (part I). J Pediatr Health Care 2007; 21 (3) 146-152
  • 39 Rosenbloom L. Diagnosis and management of cerebral palsy. Arch Dis Child 1995; 72 (4) 350-354
  • 40 Pomeroy VM, Dean D, Sykes L , et al. The unreliability of clinical measures of muscle tone: implications for stroke therapy. Age Ageing 2000; 29 (3) 229-233
  • 41 Bodensteiner JB. The evaluation of the hypotonic infant. Semin Pediatr Neurol 2008; 15 (1) 10-20
  • 42 Brashear A, Butler IJ, Ozelius LJ , et al. Rapid-onset dystonia-parkinsonism: a report of clinical, biochemical, and genetic studies in two families. Adv Neurol 1998; 78: 335-339
  • 43 Young AB, Shoulson I, Penney JB , et al. Huntington's disease in Venezuela: neurologic features and functional decline. Neurology 1986; 36 (2) 244-249
  • 44 Nygaard TG, Trugman JM, de Yebenes JG, Fahn S. Dopa-responsive dystonia: the spectrum of clinical manifestations in a large North American family. Neurology 1990; 40 (1) 66-69
  • 45 Cook DG, Fahn S, Brait KA. Chronic manganese intoxication. Arch Neurol 1974; 30 (1) 59-64
  • 46 Malfait N, Sanger TD. Does dystonia always include co-contraction? A study of unconstrained reaching in children with primary and secondary dystonia. Exp Brain Res 2007; 176 (2) 206-216
  • 47 Tabaddor K, Wolfson LI, Sharpless NS. Diminished ventricular fluid dopamine metabolites in adult-onset dystonia. Neurology 1978; 28 (12) 1254-1258
  • 48 Segawa M. Development of the nigrostriatal dopamine neuron and the pathways in the basal ganglia. Brain Dev 2000; 22 (Suppl. 01) S1-S4
  • 49 Löwing K, Brogren Carlberg E. Reliability of the selective motor control scale in children with cerebral palsy. Adv Physiother 2009; 11 (2) 58-63
  • 50 Zwaan E, Becher JG, Harlaar J. Synergy of EMG patterns in gait as an objective measure of muscle selectivity in children with spastic cerebral palsy. Gait Posture 2012; 35 (1) 111-115
  • 51 Cahill-Rowley K, Rose J. Etiology of impaired selective motor control: emerging evidence and its implications for research and treatment in cerebral palsy. Dev Med Child Neurol 2014; 56 (6) 522-528
  • 52 Fowler EG, Goldberg EJ. The effect of lower extremity selective voluntary motor control on interjoint coordination during gait in children with spastic diplegic cerebral palsy. Gait Posture 2009; 29 (1) 102-107
  • 53 Fowler EG, Staudt LA, Greenberg MB, Oppenheim WL. Selective Control Assessment of the Lower Extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol 2009; 51 (8) 607-614
  • 54 Krabben T, Prange GB, Molier BI, Rietman JS, Buurke JH. Objective measurement of synergistic movement patterns of the upper extremity following stroke: an explorative study. IEEE Int Conf Rehabil Robot 2011; 2011: 5975430
  • 55 Sukal TM, Ellis MD, Dewald JP. Shoulder abduction-induced reductions in reaching work area following hemiparetic stroke: neuroscientific implications. Exp Brain Res 2007; 183 (2) 215-223
  • 56 Ellis MD, Holubar BG, Acosta AM, Beer RF, Dewald JP. Modifiability of abnormal isometric elbow and shoulder joint torque coupling after stroke. Muscle Nerve 2005; 32 (2) 170-178
  • 57 Topka H, Konczak J, Schneider K, Boose A, Dichgans J. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res 1998; 119 (4) 493-503
  • 58 Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol 1996; 76 (1) 492-509
  • 59 Bastian AJ. Mechanisms of ataxia. Phys Ther 1997; 77 (6) 672-675
  • 60 Bakker M, Allum JH, Visser JE , et al. Postural responses to multidirectional stance perturbations in cerebellar ataxia. Exp Neurol 2006; 202 (1) 21-35
  • 61 Bastian AJ. Cerebellar limb ataxia: abnormal control of self-generated and external forces. Ann N Y Acad Sci 2002; 978: 16-27
  • 62 Shimansky Y, Wang JJ, Bauer RA, Bracha V, Bloedel JR. On-line compensation for perturbations of a reaching movement is cerebellar dependent: support for the task dependency hypothesis. Exp Brain Res 2004; 155 (2) 156-172
  • 63 Dichgans J, Diener H. Clinical evidence for functional compartmentalization of the cerebellum. In: Bloedel JR, Dichgans J, Wolfgang Precht W, , eds. Cerebellar Functions . Berlin, Heidelberg: Springer; 1985: 126-147
  • 64 Dietrichs E. Clinical manifestation of focal cerebellar disease as related to the organization of neural pathways. Acta Neurol Scand Suppl 2008; 188: 6-11
  • 65 Miller G. Minor congenital anomalies and ataxic cerebral palsy. Arch Dis Child 1989; 64 (4) 557-562
  • 66 Aarsen FK, Van Dongen HR, Paquier PF, Van Mourik M, Catsman-Berrevoets CE. Long-term sequelae in children after cerebellar astrocytoma surgery. Neurology 2004; 62 (8) 1311-1316
  • 67 Konczak J, Schoch B, Dimitrova A, Gizewski E, Timmann D. Functional recovery of children and adolescents after cerebellar tumour resection. Brain 2005; 128 (Pt 6) 1428-1441
  • 68 Guzzetta A, Mercuri E, Cioni G. Visual disorders in children with brain lesions: 2. Visual impairment associated with cerebral palsy. Eur J Paediatr Neurol 2001; 5 (3) 115-119
  • 69 Woollacott MH, Shumway-Cook A. Postural dysfunction during standing and walking in children with cerebral palsy: what are the underlying problems and what new therapies might improve balance?. Neural Plast 2005; 12 (2-3) 211-219 , discussion 263–272
  • 70 Gage JR, Novacheck TF. An update on the treatment of gait problems in cerebral palsy. J Pediatr Orthop B 2001; 10 (4) 265-274
  • 71 Hsue BJ, Miller F, Su FC. The dynamic balance of the children with cerebral palsy and typical developing during gait. Part I: Spatial relationship between COM and COP trajectories. Gait Posture 2009; 29 (3) 465-470
  • 72 Rose J, Wolff DR, Jones VK, Bloch DA, Oehlert JW, Gamble JG. Postural balance in children with cerebral palsy. Dev Med Child Neurol 2002; 44 (1) 58-63
  • 73 Goldenberg G. Apraxia and beyond: life and work of Hugo Liepmann. Cortex 2003; 39 (3) 509-524
  • 74 Goldenberg G. Apraxia - the cognitive side of motor control. Cortex 2014; 57: 270-274
  • 75 Polatajko HJ, Cantin N. Developmental coordination disorder (dyspraxia): an overview of the state of the art. Semin Pediatr Neurol 2005; 12 (4) 250-258
  • 76 Polatajko H, Fox M, Missiuna C. An international consensus on children with developmental coordination disorder. Can J Occup Ther 1995; 62 (1) 3-6
  • 77 Gibbs J, Appleton J, Appleton R. Dyspraxia or developmental coordination disorder? Unravelling the enigma. Arch Dis Child 2007; 92 (6) 534-539
  • 78 Mandich AD, Polatajko HJ, Macnab JJ, Miller LT. Treatment of children with Developmental Coordination Disorder: what is the evidence?. Phys Occup Ther Pediatr 2001; 20 (2-3) 51-68
  • 79 Russman BS, Tilton A, Gormley Jr ME. Cerebral palsy: a rational approach to a treatment protocol, and the role of botulinum toxin in treatment. Muscle Nerve Suppl 1997; 6: S181-S193
  • 80 Albright AL. Baclofen in the treatment of cerebral palsy. J Child Neurol 1996; 11 (2) 77-83
  • 81 Koman LA, Mooney III JF, Smith BP, Walker F, Leon JM ; BOTOX Group. Botulinum toxin type A neuromuscular blockade in the treatment of lower extremity spasticity in cerebral palsy: a randomized, double-blind, placebo-controlled trial. J Pediatr Orthop 2000; 20 (1) 108-115
  • 82 Graham HK, Aoki KR, Autti-Rämö I , et al. Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture 2000; 11 (1) 67-79
  • 83 Jankovic J. Treatment of dystonia. Lancet Neurol 2006; 5 (10) 864-872
  • 84 Sanger TD. Pediatric movement disorders. Curr Opin Neurol 2003; 16 (4) 529-535
  • 85 Hoon Jr AH, Freese PO, Reinhardt EM , et al. Age-dependent effects of trihexyphenidyl in extrapyramidal cerebral palsy. Pediatr Neurol 2001; 25 (1) 55-58
  • 86 Pranzatelli MR. Oral pharmacotherapy for the movement disorders of cerebral palsy. J Child Neurol 1996; 11 (Suppl. 01) S13-S22
  • 87 Heggarty H, Wright T. Tetrabenazine in athetoid cerebral palsy. Dev Med Child Neurol 1974; 16 (2) 137-142
  • 88 Ando N, Ueda S. Functional deterioration in adults with cerebral palsy. Clin Rehabil 2000; 14 (3) 300-306
  • 89 Fuji T, Yonenobu K, Fujiwara K , et al. Cervical radiculopathy or myelopathy secondary to athetoid cerebral palsy. J Bone Joint Surg Am 1987; 69 (6) 815-821
  • 90 Gajdosik CG, Cicirello N. Secondary conditions of the musculoskeletal system in adolescents and adults with cerebral palsy. Phys Occup Ther Pediatr 2001; 21 (4) 49-68
  • 91 Bryanton C, Bossé J, Brien M, McLean J, McCormick A, Sveistrup H. Feasibility, motivation, and selective motor control: virtual reality compared to conventional home exercise in children with cerebral palsy. Cyberpsychol Behav 2006; 9 (2) 123-128
  • 92 Deutsch JE, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P. Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys Ther 2008; 88 (10) 1196-1207
  • 93 Snider L, Majnemer A, Darsaklis V. Virtual reality as a therapeutic modality for children with cerebral palsy. Dev Neurorehabil 2010; 13 (2) 120-128
  • 94 Meyer-Heim A, Ammann-Reiffer C, Schmartz A , et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child 2009; 94 (8) 615-620
  • 95 Fluet GG, Qiu Q, Kelly D , et al. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy. Dev Neurorehabil 2010; 13 (5) 335-345
  • 96 Smania N, Bonetti P, Gandolfi M , et al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil 2011; 90 (2) 137-149
  • 97 Bar-Haim S, Harries N, Belokopytov M , et al. Comparison of efficacy of Adeli suit and neurodevelopmental treatments in children with cerebral palsy. Dev Med Child Neurol 2006; 48 (5) 325-330
  • 98 Cherng RJ, Liu CF, Lau TW, Hong RB. Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy. Am J Phys Med Rehabil 2007; 86 (7) 548-555
  • 99 Krebs HI, Ladenheim B, Hippolyte C, Monterroso L, Mast J. Robot-assisted task-specific training in cerebral palsy. Dev Med Child Neurol 2009; 51 (Suppl. 04) 140-145
  • 100 Begnoche DM, Pitetti KH. Effects of traditional treatment and partial body weight treadmill training on the motor skills of children with spastic cerebral palsy. A pilot study. Pediatr Phys Ther 2007; 19 (1) 11-19
  • 101 Siracusa C, Taynor M, Geletka B, Overby A, Willan M. Effectiveness of a biomechanical intervention in children with spastic diplegia. Pediatr Phys Ther 2005; 17 (1) 83-84
  • 102 Yasukawa A, Patel P, Sisung C. Pilot study: investigating the effects of Kinesio Taping in an acute pediatric rehabilitation setting. Am J Occup Ther 2006; 60 (1) 104-110
  • 103 Iosa M, Morelli D, Nanni MV , et al. Functional taping: a promising technique for children with cerebral palsy. Dev Med Child Neurol 2010; 52 (6) 587-589
  • 104 da Costa CS, Rodrigues FS, Leal FM, Rocha NA. Pilot study: Investigating the effects of Kinesio Taping® on functional activities in children with cerebral palsy. Dev Neurorehabil 2013; 16 (2) 121-128