Clin Colon Rectal Surg 2018; 31(03): 179-191
DOI: 10.1055/s-0037-1602238
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Emerging Systemic Therapies for Colorectal Cancer

Christine M. Veenstra
1   Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
,
John C. Krauss
1   Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
› Author Affiliations
Further Information

Publication History

Publication Date:
01 April 2018 (online)

Abstract

Despite advances over the past 20 years in colorectal cancer (CRC) screening, diagnosis, and treatment, survival outcomes remain suboptimal. Five-year survival for patients with locally advanced CRC is 69%; 5-year survival drops to 12% for patients with metastatic disease. Novel, effective systemic therapies are needed to improve long-term outcomes. In this review, we describe currently available systemic therapies for the treatment of locally advanced and metastatic CRC and discuss emerging therapies, including encouraging advances in identifying novel targeted agents and exciting responses to immunotherapeutic agents.

 
  • References

  • 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66 (01) 7-30
  • 2 American Cancer Society. Cancer Facts & Figures 2016. Atlanta: American Cancer Society; 2016 . Available at: http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2016/ . Accessed March 18, 2016
  • 3 Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 2009; 22 (04) 191-197
  • 4 Kopetz S, Chang GJ, Overman MJ. , et al. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol 2009; 27 (22) 3677-3683
  • 5 André T, Boni C, Navarro M. , et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 2009; 27 (19) 3109-3116
  • 6 Siegel R, DeSantis C, Virgo K. , et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 2012; 62 (04) 220-241
  • 7 Heidelberger C, Chaudhuri NK, Danneberg P. , et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 1957; 179 (4561): 663-666
  • 8 Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3 (05) 330-338
  • 9 Moertel CG, Fleming TR, Macdonald JS. , et al. Intergroup study of fluorouracil plus levamisole as adjuvant therapy for stage II/Dukes' B2 colon cancer. J Clin Oncol 1995; 13 (12) 2936-2943
  • 10 Wolmark N, Rockette H, Mamounas E. , et al. Clinical trial to assess the relative efficacy of fluorouracil and leucovorin, fluorouracil and levamisole, and fluorouracil, leucovorin, and levamisole in patients with Dukes' B and C carcinoma of the colon: results from National Surgical Adjuvant Breast and Bowel Project C-04. J Clin Oncol 1999; 17 (11) 3553-3559
  • 11 André T, Boni C, Mounedji-Boudiaf L. , et al; Multicenter International Study of Oxaliplatin/5-Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer (MOSAIC) Investigators. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 2004; 350 (23) 2343-2351
  • 12 O'Connell MJ, Colangelo LH, Beart RW. , et al. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and Bowel Project trial R-04. J Clin Oncol 2014; 32 (18) 1927-1934
  • 13 Twelves C, Scheithauer W, McKendrick J. , et al. Capecitabine versus 5-fluorouracil/folinic acid as adjuvant therapy for stage III colon cancer: final results from the X-ACT trial with analysis by age and preliminary evidence of a pharmacodynamic marker of efficacy. Ann Oncol 2012; 23 (05) 1190-1197
  • 14 Boland GM, Chang GJ, Haynes AB. , et al. Association between adherence to National Comprehensive Cancer Network treatment guidelines and improved survival in patients with colon cancer. Cancer 2013; 119 (08) 1593-1601
  • 15 Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23 (05) 1011-1027
  • 16 Hurwitz H, Fehrenbacher L, Novotny W. , et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350 (23) 2335-2342
  • 17 Cao Y, Tan A, Gao F, Liu L, Liao C, Mo Z. A meta-analysis of randomized controlled trials comparing chemotherapy plus bevacizumab with chemotherapy alone in metastatic colorectal cancer. Int J Colorectal Dis 2009; 24 (06) 677-685
  • 18 Wagner AD, Arnold D, Grothey AA, Haerting J, Unverzagt S. Anti-angiogenic therapies for metastatic colorectal cancer. Cochrane Database Syst Rev 2009; (03) CD005392
  • 19 Bennouna J, Sastre J, Arnold D. , et al; ML18147 Study Investigators. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol 2013; 14 (01) 29-37
  • 20 Van Cutsem E, Tabernero J, Lakomy R. , et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012; 30 (28) 3499-3506
  • 21 Tabernero J, Yoshino T, Cohn AL. , et al; RAISE Study Investigators. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 2015; 16 (05) 499-508
  • 22 Karapetis CS, Khambata-Ford S, Jonker DJ. , et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359 (17) 1757-1765
  • 23 Amado RG, Wolf M, Peeters M. , et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26 (10) 1626-1634
  • 24 Venook AP, Niedzwiecki D, Lenz H-J. , et al. CALGB/SWOG 80405: Phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). J Clin Oncol 2014 ;32(15, Suppl):Abstract LBA3
  • 25 Heinemann V, von Weikersthal LF, Decker T. , et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014; 15 (10) 1065-1075
  • 26 Primrose J, Falk S, Finch-Jones M. , et al. Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis: the New EPOC randomised controlled trial. Lancet Oncol 2014; 15 (06) 601-611
  • 27 Nordlinger B, Poston GJ, Goldberg RM. Should the results of the new EPOC trial change practice in the management of patients with resectable metastatic colorectal cancer confined to the liver?. J Clin Oncol 2015; 33 (03) 241-243
  • 28 Hasegawa K, Oba M, Kokudo N. Cetuximab for resectable colorectal liver metastasis: new EPOC trial. Lancet Oncol 2014; 15 (08) e305-e306
  • 29 Alberts SR, Sargent DJ, Nair S. , et al. Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: a randomized trial. JAMA 2012; 307 (13) 1383-1393
  • 30 Strumberg D, Scheulen ME, Schultheis B. , et al. Regorafenib (BAY 73-4506) in advanced colorectal cancer: a phase I study. Br J Cancer 2012; 106 (11) 1722-1727
  • 31 Grothey A, Van Cutsem E, Sobrero A. , et al; CORRECT Study Group. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013; 381 (9863): 303-312
  • 32 Emura T, Suzuki N, Yamaguchi M, Ohshimo H, Fukushima M. A novel combination antimetabolite, TAS-102, exhibits antitumor activity in FU-resistant human cancer cells through a mechanism involving FTD incorporation in DNA. Int J Oncol 2004; 25 (03) 571-578
  • 33 Mayer RJ, Van Cutsem E, Falcone A. , et al; RECOURSE Study Group. Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med 2015; 372 (20) 1909-1919
  • 34 Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487 (7407): 330-337
  • 35 Gridelli C, Ciardiello F, Gallo C. , et al. First-line erlotinib followed by second-line cisplatin-gemcitabine chemotherapy in advanced non-small-cell lung cancer: the TORCH randomized trial. J Clin Oncol 2012; 30 (24) 3002-3011
  • 36 Ingold Heppner B, Behrens HM, Balschun K. , et al. HER2/neu testing in primary colorectal carcinoma. Br J Cancer 2014; 111 (10) 1977-1984
  • 37 Siena S, Sartore-Bianchi A, Lonardi S. , et al. Trastuzumab and lapatinib in HER2-amplified metastatic colorectal cancer patients (mCRC): the HERACLES trial. J Clin Oncol 2015 ;33(Suppl):Abstract 3508
  • 38 Wei G (G), Cam N, Patel R, Shoemaker R, Wild R, Li G. Overexpression of neurotrophic tyrosine receptor kinases (NTRKs) as a potential therapeutic target for cancer. Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18–22; Philadelphia, PA. Philadelphia (PA). 2015 ;75(15, Suppl):Abstract 127
  • 39 De Braud FG, Niger M, Damian S. , et al. ALKA-372–001: First-in-human phase 1 study of entrectinib, an oral Pan-Trk, ROS1, and ALK inhibitor, in patients with advanced solid tumors with relevant molecular alterations. J Clin Oncol 2015 ;33(Suppl):Abstract 2517
  • 40 Burris HA, Brose MS, Shaw AT. , et al. A first-in-human study of LOXO-101, a highly selective inhibitor of the tropomyosin receptor kinase (TRK) family. J Clin Oncol 2015 ;33(Suppl):Abstract TPS2624
  • 41 Gravina GL, Senapedis W, McCauley D, Baloglu E, Shacham S, Festuccia C. Nucleo-cytoplasmic transport as a therapeutic target of cancer. J Hematol Oncol 2014; 7: 85
  • 42 Chen C, Garzon R, Gutierrez M. , et al. Safety, efficacy, and determination of the recommended phase 2 dose for the oral selective inhibitor of nuclear export (SINE) Selinexor (KPT-330). Blood 2015; 126: 258
  • 43 Abdul Razak AR, Mau-Soerensen M, Gabrail NY. , et al. First-in-class, first-in-human phase I study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors. J Clin Oncol 2016; 34 (34) 4142-4150
  • 44 Mitchell RA, Metz CN, Peng T, Bucala R. Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoid action. J Biol Chem 1999; 274 (25) 18100-18106
  • 45 Bacher M, Metz CN, Calandra T. , et al. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci U S A 1996; 93 (15) 7849-7854
  • 46 Hussain F, Freissmuth M, Völkel D. , et al. Human anti-macrophage migration inhibitory factor antibodies inhibit growth of human prostate cancer cells in vitro and in vivo. Mol Cancer Ther 2013; 12 (07) 1223-1234
  • 47 Kerschbaumer RJ, Rieger M, Völkel D. , et al. Neutralization of macrophage migration inhibitory factor (MIF) by fully human antibodies correlates with their specificity for the β-sheet structure of MIF. J Biol Chem 2012; 287 (10) 7446-7455
  • 48 Mahalingam D, Patel MR, Sachdev JC. , et al. First-in-human, phase I study assessing imalumab (Bax69), a first-in-class anti-oxidized macrophage migration inhibitory factor (oxMIF) antibody in advanced solid tumors. J Clin Oncol 2015 ;33(Suppl):Abstract 2518
  • 49 Luke JJ, Ott PA, Shapiro GI. The biology and clinical development of MEK inhibitors for cancer. Drugs 2014; 74 (18) 2111-2128
  • 50 Cho MT, Lim D, Synold TW. , et al. A phase I study of MEK162 and FOLFOX in chemotherapy-resistant metastatic colorectal cancer. J Clin Oncol 2016 ;34(Suppl 4S):Abstract 679
  • 51 Spreafico A, Tentler JJ, Pitts TM. , et al. Rational combination of a MEK inhibitor, selumetinib, and the Wnt/calcium pathway modulator, cyclosporin A, in preclinical models of colorectal cancer. Clin Cancer Res 2013; 19 (15) 4149-4162
  • 52 Novartis. BGJ398 Norvatis Web site. 2016 ; Available at: http://www.novartisoncology.com/our-work/our-pipeline
  • 53 Smyth EC, Sclafani F, Cunningham D. Emerging molecular targets in oncology: clinical potential of MET/hepatocyte growth-factor inhibitors. Onco Targets Ther 2014; 7: 1001-1014
  • 54 Bardelli A, Corso S, Bertotti A. , et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov 2013; 3 (06) 658-673
  • 55 Elisei R, Schlumberger MJ, Müller SP. , et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013; 31 (29) 3639-3646
  • 56 Awasthi N, Schwarz RE. Profile of nintedanib in the treatment of solid tumors: the evidence to date. Onco Targets Ther 2015; 8: 3691-3701
  • 57 Van Cutsem E, Prenen H, D'Haens G. , et al. A phase I/II, open-label, randomised study of nintedanib plus mFOLFOX6 versus bevacizumab plus mFOLFOX6 in first-line metastatic colorectal cancer patients. Ann Oncol 2015; 26 (10) 2085-2091
  • 58 Bhatt RS, Atkins MB. Molecular pathways: can activin-like kinase pathway inhibition enhance the limited efficacy of VEGF inhibitors?. Clin Cancer Res 2014; 20 (11) 2838-2845
  • 59 Simonelli M, Denlinger CS, Goff LW. , et al. Phase 1 study of PF-03446962 (anti-ALK-1 mAb) in hepatocellular carcinoma (HCC): correlation of tumor and serum biomarker data with disease control. J Clin Oncol 2014 ;(Suppl):Abstract 4095
  • 60 Necchi A, Giannatempo P, Mariani L. , et al. PF-03446962, a fully-human monoclonal antibody against transforming growth-factor β (TGFβ) receptor ALK1, in pre-treated patients with urothelial cancer: an open label, single-group, phase 2 trial. Invest New Drugs 2014; 32 (03) 555-560
  • 61 Pedersen MW, Jacobsen HJ, Koefoed K. , et al. Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 2010; 70 (02) 588-597
  • 62 Dienstmann R, Patnaik A, Garcia-Carbonero R. , et al. Safety and activity of the first-in-class Sym004 anti-EGFR antibody mixture in patients with refractory colorectal cancer. Cancer Discov 2015; 5 (06) 598-609
  • 63 Schmoll H-J, Riera-Knorrenschild J, Kopp H-G. , et al. Maintenance therapy with the TLR-9 agonist MGN1703 in the phase II IMPACT study of metastatic colorectal cancer patients: a subgroup with improved overall survival. J Clin Oncol 2015 ;33(Suppl 3):Abstract 680
  • 64 Lu H, Dietsch GN, Matthews MA. , et al. VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin Cancer Res 2012; 18 (02) 499-509
  • 65 Dietsch GN, Lu H, Yang Y. , et al. Coordinated activation of toll-like receptor8 (TLR8) and NLRP3 by the TLR8 agonist, VTX-2337, ignites tumoricidal natural killer cell activity. PLoS One 2016; 11 (02) e0148764
  • 66 Zachar Z, Marecek J, Maturo C. , et al. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J Mol Med (Berl) 2011; 89 (11) 1137-1148
  • 67 Pardee TS, Lee K, Luddy J. , et al. A phase I study of the first-in-class antimitochondrial metabolism agent, CPI-613, in patients with advanced hematologic malignancies. Clin Cancer Res 2014; 20 (20) 5255-5264
  • 68 Ganai AA, Farooqi H. Bioactivity of genistein: a review of in vitro and in vivo studies. Biomed Pharmacother 2015; 76: 30-38
  • 69 Knight DC, Eden JA. Phytoestrogens--a short review. Maturitas 1995; 22 (03) 167-175
  • 70 Hwang J-T, Ha J, Park OJ. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun 2005; 332 (02) 433-440
  • 71 Robert C, Schachter J, Long GV. , et al; KEYNOTE-006 investigators. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015; 372 (26) 2521-2532
  • 72 Herbst RS, Baas P, Kim DW. , et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016; 387 (10027): 1540-1550
  • 73 Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res 2016; 22 (04) 813-820
  • 74 Brahmer JR, Tykodi SS, Chow LQ. , et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366 (26) 2455-2465
  • 75 Topalian SL, Hodi FS, Brahmer JR. , et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366 (26) 2443-2454
  • 76 Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012; 24 (02) 207-212
  • 77 Kelderman S, Schumacher TN, Kvistborg P. Mismatch repair-deficient cancers are targets for anti-PD-1 therapy. Cancer Cell 2015; 28 (01) 11-13
  • 78 Jacobs J, Smits E, Lardon F, Pauwels P, Deschoolmeester V. Immune checkpoint modulation in colorectal cancer: what's new and what to expect. J Immunol Res 2015; 2015: 158038
  • 79 Le DT, Uram JN, Wang H. , et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372 (26) 2509-2520
  • 80 Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH. CTLA-4 regulates induction of anergy in vivo. Immunity 2001; 14 (02) 145-155
  • 81 Chung KY, Gore I, Fong L. , et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J Clin Oncol 2010; 28 (21) 3485-3490
  • 82 Woo SR, Turnis ME, Goldberg MV. , et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 2012; 72 (04) 917-927
  • 83 Thomas LJ, He LZ, Marsh H, Keler T. Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity. OncoImmunology 2014; 3 (01) e27255
  • 84 Petty JK, He K, Corless CL, Vetto JT, Weinberg AD. Survival in human colorectal cancer correlates with expression of the T-cell costimulatory molecule OX-40 (CD134). Am J Surg 2002; 183 (05) 512-518
  • 85 Pedroza-Gonzalez A, Verhoef C, Ijzermans JN. , et al. Activated tumor-infiltrating CD4+ regulatory T cells restrain antitumor immunity in patients with primary or metastatic liver cancer. Hepatology 2013; 57 (01) 183-194
  • 86 Bartkowiak T, Curran MA. 4-1BB agonists: multi-potent potentiators of tumor immunity. Front Oncol 2015; 5: 117
  • 87 Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. Immune modulation in cancer with antibodies. Annu Rev Med 2014; 65: 185-202
  • 88 Morgan RA, Dudley ME, Wunderlich JR. , et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314 (5796): 126-129
  • 89 Dudley ME, Wunderlich JR, Yang JC. , et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23 (10) 2346-2357
  • 90 Robbins PF, Morgan RA, Feldman SA. , et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011; 29 (07) 917-924
  • 91 Parkhurst MR, Yang JC, Langan RC. , et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; 19 (03) 620-626
  • 92 Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365 (08) 725-733
  • 93 Maude SL, Frey N, Shaw PA. , et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371 (16) 1507-1517
  • 94 Ma Q, Gonzalo-Daganzo RM, Junghans RP. Genetically engineered T cells as adoptive immunotherapy of cancer. Cancer Chemother Biol Response Modif 2002; 20: 315-341
  • 95 Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18 (04) 843-851
  • 96 Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer 2013; 13 (08) 525-541
  • 97 Oh DY, Venook AP, Fong L. On the verge: immunotherapy for colorectal carcinoma. J Natl Compr Canc Netw 2015; 13 (08) 970-978
  • 98 Uyl-de Groot CA, Vermorken JB, Hanna Jr MG. , et al. Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer: a prospective study of medical and economic benefits. Vaccine 2005; 23 (17-18): 2379-2387
  • 99 Gollamudi R, Ghalib MH, Desai KK. , et al. Intravenous administration of Reolysin, a live replication competent RNA virus is safe in patients with advanced solid tumors. Invest New Drugs 2010; 28 (05) 641-649