Nervenheilkunde 2009; 28(10): 683-688
DOI: 10.1055/s-0038-1627145
Nuklearmedizinische Bildgebung
Schattauer GmbH

Nuklearmedizinische Diagnostik in der Neuroonkologie

Nuclear medicine diagnostics in neurooncology
K.-J. Langen
1   Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich
,
M. Weckesser
2   Nuklearmedizinische Klinik und Poliklinik, Universität Münster
,
D. Pauleit
1   Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich
,
J. Steiger
3   Neurochirurgische Klinik des Universitätsklinikums Düsseldorf
› Author Affiliations
Further Information

Publication History

Eingegangen am: 10 June 2009

angenommen am: 07 June 2009

Publication Date:
19 January 2018 (online)

Zusammenfassung

Die Beurteilung der Ausdehnung von Hirntumoren, die Abschätzung der Prognose und die Rezidivdiagnostik stellen auch im Zeitalter der Magnetresonanztomografie (MRT) noch wichtige Herausforderungen in der neuroonkologischen Diagnostik dar. Nuklearmedizinische Verfahren unter Verwendung der Positronen- Emissions-Tomografie (PET) und Single- Photonen-Emissions-Computertomografie (SPECT) können einen wesentlichen Beitrag leisten. So ermöglichen die PET und SPECT mit radioaktiv markierten Aminosäuren eine optimierte Darstellung der Ausdehnung von zerebralen Gliomen, was bei der Probeentnahme, der Planung einer Operation und einer Bestrahlung hilfreich sein kann. Außerdem können mit verschiedenen Tracern Tumorrezidive von posttherapeutischen Veränderungen besser differenziert werden sowie Hinweise auf den Malignitätsgrad und die Prognose von Hirntumoren gewonnen werden.

Summary

The diagnostic assessment of tumor extent, grading and detection of recurrence of brain tumors remains a challenge in the era of magnetic resonance imaging (MRI). Positron emission tomography (PET) and single photon emission computed tomography (SPECT) may provide relevant additional information which allow more accurate diagnostics in unclear situations. Especially, PET and SPECT studies using radiolabeled amino acids offer a better delineation of cerebral gliomas which helps to guide biopsies, to plan surgical interventions and radiation therapy. Additionally, several radiotracers help to differentiate tumor recurrence from unspecific post-therapeutic changes in brain tissue and provide information on histological grading and prognosis of brain tumors.

 
  • Literatur

  • 1 Chen W. et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005; 46: 945-952.
  • 2 Chen W. Clinical applications of PET in brain tumors. J Nucl Med 2007; 48: 1468-1481.
  • 3 Chen W, Delaloye S, Silverman DH. et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 2007; 25: 4714-4721.
  • 4 Cher LM. et al. Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 2006; 47: 410-418.
  • 5 Choi JY. et al. Brain tumor imaging with 99mTctetrofosmin: comparison with 201Tl, 99mTc-MIBI, and 18F-fluorodeoxyglucose. J Neurooncol 2000; 46: 63-70.
  • 6 De Herder WW. et al. Diagnostic imaging of dopamine receptors in pituitary adenomas. Eur J Endocrinol 2007; 156 (Suppl. 01) S53-56.
  • 7 Del Sole A. et al. Anatomical and biochemical investigation of primary brain tumours. Eur J Nucl Med 2001; 28: 1851-1872.
  • 8 Derlon JM. The in vivo metabolic investigation of brain gliomas with positron emission tomography. Adv Tech Stand Neurosurg 1998; 24: 41-76.
  • 9 Ernst S. Hirntumoren. In: Heindel W, Kugel H, Lackner K. (eds). Rationelle MR-Untersuchungstechniken. Stuttgart: Thieme; 1997: 3-7.
  • 10 Floeth F. et al. Multimodal metabolic imaging of cerebral gliomas using positron emission tomography with [18F]-fluoroethyl-l-tyrosine and magnetic resonance spectroscopy. J Neurosurgery 2005; 102: 318-327.
  • 11 Floeth FW. et al. Prognostic value of O-(2-18F-fluoroethyl)- L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 2007; 48: 519-527.
  • 12 Galldiks N. et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 2006; 33: 516-524.
  • 13 Goldman S. et al. Regional methionine and glucose uptake in high-grade gliomas: A comparative study on PET-guided stereotactic biopsy. J Nucl Med 1997; 38: 1459-1462.
  • 14 Gomez-Rio M. et al. 201Tl-SPECT in low-grade gliomas: diagnostic accuracy in differential diagnosis between tumour recurrence and radionecrosis. Eur J Nucl Med Mol Imaging 2004; 31: 1237-1243.
  • 15 Grosu AL. et al. Reirradiation of recurrent highgrade gliomas using amino acid PET(SPECT)/CT/ MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63: 511-519.
  • 16 Hellwig D. et al. Intra-individual comparison of p-[123I]-iodo-L-phenylalanine and L-3-[123I]-iodoalpha- methyl-tyrosine for SPECT imaging of gliomas. Eur J Nucl Med Mol Imaging 2008; 35: 24-31.
  • 17 Hemm S. et al. Stereotactic coregistration of 201Tl SPECT and MRI applied to brain tumor biopsies. J Nucl Med 2005; 46: 1151-1157.
  • 18 Henze M. et al. PET and SPECT for detection of tumor progression in irradiated low-grade astrocytoma: a receiver-operating-characteristic analysis. J Nucl Med 2004; 45: 579-586.
  • 19 Henze M. et al. Characterization of 68Ga-DOTAD- Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 2005; 46: 763-769.
  • 20 Herholz K. et al. 11C-methionine PET for differential diagnosis of low-grade-gliomas. Neurology 1998; 50: 1316-1322.
  • 21 Jacobs AH. et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001; 358 9283 727-729.
  • 22 Jacobs AH. et al. Imaging in neurooncology. NeuroRx 2005; 2: 333-347.
  • 23 Jacobs AH. et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 2005; 46: 1948-1958.
  • 24 Jager PL. et al. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001; 42: 432-445.
  • 25 Kaschten B. et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998; 39: 778-785.
  • 26 Kracht LW. et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004; 10: 7163-7170.
  • 27 Kuwert T. et al. Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine. J Nucl Med 1998; 39: 23-27.
  • 28 Langen KJ, Pauleit D, Coenen HH. [123I]Iodoa- Methyl-L-Tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2002; 29: 625-631.
  • 29 Langen KJ. et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2006; 33: 287-294.
  • 30 Langen KJ, Stoffels G. Hirntumoren. Nuklearmediziner 2007; 30: 204-211.
  • 31 Langen KJ. et al. Diagnostik von zerebralen Gliomen mit radioaktiv markierten Aminosäuren. Dtsch Arztebl 2008; 105: 55-61.
  • 32 Langen KJ, Stoffels G. O-(2-[18F]Fluorethyl)-L-tyrosin (FET) in der Diagnostik von Hirntumoren. Nuklearmediziner 2009; 32: 1-7.
  • 33 Le Jeune F. et al. Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies. J Neurooncol 2006; 77: 177-183.
  • 34 Nathoo N. et al. The role of 111indium-octreotide brain scintigraphy in the diagnosis of cranial, duralbased meningiomas. J Neurooncol 2007; 81: 167-174.
  • 35 Ohtani T. et al. Brain tumour imaging with carbon- 11 choline: comparison with FDGPET and gadolinium- enhanced MR imaging. Eur J Nucl Med 2001; 28: 1664-1670.
  • 36 Pauleit D. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with Magnetic Resonance Imaging Improves the Diagnostic Assessment of Cerebral Gliomas. Brain 2005; 128: 678-687.
  • 37 Pirotte B. et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 2004; 45: 1293-1298.
  • 38 Plotkin M. et al. 123I-IMT SPECT and 1H MR-spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. J Neurooncol 2004; 70: 49-58.
  • 39 Pöpperl G. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 2005; 32: 1018-1025.
  • 40 Pöpperl G. et al. Serial O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 2006; 33: 792-800.
  • 41 Pöpperl G. et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods?. J Nucl Med 2006; 47: 393-403.
  • 42 Pöpperl G. et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 2007; 34: 1933-1942.
  • 43 Le Jeune FP. et al. Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies. J Neurooncol 2006; 77: 177-183.
  • 44 Rachinger W. et al. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 2005; 57: 505-511.
  • 45 Ribom D. et al. Positron emission tomography (11)C-methionine and survival in patients with lowgrade gliomas. Cancer 2001; 92: 1541-1549.
  • 46 Ricci PE. et al. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography?. Am J Neuroradiol 1998; 19: 407-413.
  • 47 Saleem A. et al. Metabolic activation of temozolomide measured in vivo using positron emission tomography. Cancer Res 2003; 63: 2409-2415.
  • 48 Schillaci O. et al. Single-photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med 2007; 37: 34-47.
  • 49 Semba T. et al. Thallium-201 SPECT in prognostic assessment of malignant gliomas treated with postoperative radiotherapy. Ann Nucl Med 2006; 20: 287-294.
  • 50 Singhal T. et al. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 2008; 10: 1-18.
  • 51 Sun D. et al. Clinical application of 201Tl SPECT imaging of brain tumors. J Nucl Med 2000; 41: 5-10.
  • 52 Van Laere K. et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 2005; 32: 39-51.
  • 53 Vos MJ. et al. Thallium-201 SPECT: the optimal prediction of response in glioma therapy. Eur J Nucl Med Mol Imaging 2006; 33: 222-227.
  • 54 Weckesser M. et al. Initial experiences with O-(2-[18F]fluorethyl)-L-tyrosine PET in the evaluation of primary brain tumors. Eur J Nucl Med 2005; 32: 422-429.