Osteologie 2013; 22(02): 108-112
DOI: 10.1055/s-0038-1630115
Osteologie des Kindes- und Jugendalters
Schattauer GmbH

Erworbene Störungen des Skelettsystems

Osteoporose und Rachitis/OsteomalazieAcquired disturbance of the skeletal systemOsteoporosis and rickets/osteomalacia
S. Bechtold-Dalla Pozza
1   Pädiatrische Endokrinologie/Diabetologie, Dr. von Haunersches Kinderspital der LMU München
› Author Affiliations
Further Information

Publication History

eingereicht: 24 February 2013

angenommen: 20 March 2013

Publication Date:
30 January 2018 (online)

Zusammenfassung

Die Osteoporose stellt ein weltweites Gesundheitsproblem dar. Im Kindesalter tritt sie sehr viel seltener als im Erwachsenenalter auf, die Ursachen sind mannigfaltig. Bisher wurden zahlreiche Kandidatengene für die Knochendichte gefunden, die mit der individuellen Knochendichte assoziiert zu sein scheinen. Neben der primären Osteoporose gibt es eine Vielzahl von Erkrankungen, die von einer sekundären Osteoporose begleitet werden. Die zugrundeliegenden Pathomechanismen sind vielseitig. Unter anderem greifen Zytokine in das Gleichgewicht zwischen Osteoblasten und Osteoklasten ein. Neben krankheitsbedingtem Knochenmasseverlust beeinflussen Lebensstil und Ernährungsverhalten die Knochenentwicklung. Bei mehr als 60 Prozent der Kinder und Jugendlichen in Deutschland liegt eine ungenügende Versorgung mit Vitamin D vor. In schwereren Fällen kann es zu einer Rachitis, bei verschlossenen Wachstumsfugen zu einer Osteomalazie kommen. Neben einer frühen Diagnose einer Störung der Knochenentwicklung sind präventive und therapeutische Strategien notwendig, um die Knochen gesundheit im Kindesalter zu erhalten.

Summary

Osteoporosis is a well-known worldwide health problem. Usually adults, especially the elderly, are affected. However, children could also develop osteoporosis or less severe forms of reduced bone mass. The underlying pathomechanism is multifactorial. Several candidate genes have been found being associated with lower bone mineral density. Besides primary osteoporosis forms a large number of chronic diseases are accompanied by bone loss. The child may not reach his or her genetically-determined peak bone mass or develop fractures. The mechanism involved in the pathogenesis of secondary bone loss includes among others elevated cytokines influencing the balance between modelling and remodelling. Glucocorticoid induced osteoporosis is the most common form of secondary osteoporosis. Glucocorticoids have direct and indirect effects on the skeleton. They impair the replication, differentiation and function of osteoblasts and induce apoptosis of mature osteoblasts and osteocytes, leading to suppression of bone formation. Glucocorticoids promote osteoclastogenesis and therefore increase bone resorption. Besides disease related bone loss, lifestyle changes including food and amount of weight bearing activity have an influence on bone health. Due to a survey in Germany about 60 % of children and adolescents have insufficient vitamin D levels leading possibly to rickets or osteomalacia, especially those with a migration background. Early recognition as well as preventive and therapeutic strategies are warranted to provide bone health in children.

 
  • Literatur

  • 1 Dobnig H. Vitamin D. Osteologie 2011; 20: 289.
  • 2 Pilz S, Kienreich K, Tomaschitz A. Über das Skelett hinaus - neue Gebiete der Vitamin-D-Forschung. Osteologie 2011; 20 (4) 324-327.
  • 3 Schoenau E, Saggese G, Peter F. et al. From bone biology to bone analysis. Horm Res 2004; 61 (6) 257-269.
  • 4 Holick MF, Binkley NC, Bischoff-Ferrari HA. et al. Guidelines for preventing and treating vitamin D deficiency and insufficiency revisited. J Clin Endocrinol Metab 2012; 97 (4) 1153-1158.
  • 5 Hintzpeter B, Scheidt-Nave C, Muller MJ. et al. Higher prevalence of vitamin D deficiency is associated with immigrant background among children and adolescents in Germany. J Nutr 2008; 138 (8) 1482-1490.
  • 6 Tan SD, Kuijpers-Jagtman AM, Semeins CM. et al. Fluid shear stress inhibits TNFalpha-induced osteocyte apoptosis. J Dent Res 2006; 85 (10) 905-909.
  • 7 Klein GL, Bi LX, Sherrard DJ. et al. Evidence supporting a role of glucocorticoids in short-term bone loss in burned children. Osteoporos Int 2004; 15 (6) 468-474.
  • 8 Ohnaka K, Tanabe M, Kawate H. et al. Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem Biophys Res Commun 2005; 329 (1) 177-181.
  • 9 Canalis E. Clinical review 83: Mechanisms of glucocorticoid action in bone: implications to glucocorticoid-induced osteoporosis. J Clin Endocrinol Metab 1996; 81 (10) 3441-3447.
  • 10 Hofbauer LC, Khosla S, Dunstan CR. et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000; 15 (1) 2-12.
  • 11 Ward LM. Osteoporosis due to glucocorticoid use in children with chronic illness. Horm Res 2005; 64 (5) 209-221.
  • 12 Hufner M, Siggelkow H. [New data on the pathogenesis of steroid-induced osteoporosis: consequences for therapy and prevention]. Dtsch Med Wochenschr 2003; 128 (30) 1602-1608.
  • 13 Delany AM, Durant D, Canalis E. Glucocorticoid suppression of IGF I transcription in osteoblasts. Mol Endocrinol 2001; 15 (10) 1781-1789.
  • 14 Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 2008; 29 (5) 535-559.
  • 15 Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 1998; 102 (2) 274-282.
  • 16 Ahmed SF, Tucker P, Mushtaq T. et al. Short-term effects on linear growth and bone turnover in children randomized to receive prednisolone or dexamethasone. Clin Endocrinol (Oxf) 2002; 57 (2) 185-191.
  • 17 van Staa TP, Cooper C, Leufkens HG, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res 2003; 18 (5) 913-918.
  • 18 Burnham JM, Shults J, Semeao E. et al. Body-composition alterations consistent with cachexia in children and young adults with Crohn disease. Am J Clin Nutr 2005; 82 (2) 413-420.
  • 19 Bechtold S, Alberer M, Arenz T. et al. Reduced muscle mass and bone size in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis 2010; 16 (2) 216-225.
  • 20 Munns CF, Cowell CT. Prevention and treatment of osteoporosis in chronically ill children. J Musculoskelet Neuronal Interact 2005; 5 (3) 262-272.
  • 21 Farquharson C, Ahmed SF. Inflammation and linear bone growth: the inhibitory role of SOCS2 on GH/IGF-1 signaling. Pediatr Nephrol. 2012. Aug 11.
  • 22 Loftus Jr EV, Crowson CS, Sandborn WJ. et al. Long-term fracture risk in patients with Crohn's disease: a population-based study in Olmsted County, Minnesota. Gastroenterology 2002; 123 (2) 468-475.
  • 23 Heap J, Murray MA, Miller SC. et al. Alterations in bone characteristics associated with glycemic control in adolescents with type 1 diabetes mellitus. J Pediatr 2004; 144 (1) 56-62.
  • 24 Hofbauer LC, Brueck CC, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. J Bone Miner Res 2007; 22 (9) 1317-1328.
  • 25 Moyer-Mileur LJ, Dixon SB, Quick JL. et al. Bone mineral acquisition in adolescents with type 1 diabetes. J Pediatr 2004; 145 (5) 662-669.
  • 26 Bechtold S, Putzker S, Bonfig W. et al. Bone size normalizes with age in children and adolescents with type 1 diabetes. Diabetes Care 2007; 30 (8) 2046-2050.
  • 27 Armas LA, Akhter MP, Drincic A, Recker RR. Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus. Bone 2012; 50 (1) 91-96.
  • 28 Miao J, Brismar K, Nyren O. et al. Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 2005; 28 (12) 2850-2855.
  • 29 Mehler PS, Cleary BS, Gaudiani JL. Osteoporosis in anorexia nervosa. Eat Disord 2011; 19 (2) 194-202.
  • 30 Pack A. Bone health in people with epilepsy: is it impaired and what are the risk factors?. Seizure 2008; 17 (2) 181-186.
  • 31 Farr JN, Funk JL, Chen Z. et al. Skeletal muscle fat content is inversely associated with bone strength in young girls. J Bone Miner Res 2011; 26 (9) 2217-2225.
  • 32 Felsenberg D. Muskuloskelettale Anpassung bei Immobilisation. Osteologie 2010; 19 (3) 210-215.
  • 33 Rufo A, Del Fattore A, Capulli M. et al. Mechanisms inducing low bone density in Duchenne muscular dystrophy in mice and humans. J Bone Miner Res 2011; 26 (8) 1891-1903.
  • 34 Bachrach LK, Ward LM. Clinical review 1: Bisphosphonate use in childhood osteoporosis. J Clin Endocrinol Metab 2009; 94 (2) 400-409.
  • 35 Bechtold S, Ripperger P, Dalla Pozza R. et al. Dynamics of body composition and bone in patients with juvenile idiopathic arthritis treated with growth hormone. J Clin Endocrinol Metab 2010; 95 (1) 178-185.
  • 36 Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 2004; 292 (4) 490-495.