Semin Thromb Hemost 2021; 47(07): 815-823
DOI: 10.1055/s-0041-1726372
Review Article

ROTEM Testing for Direct Oral Anticoagulants

Barbora Korpallová
1   Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
,
Matej Samoš
1   Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
,
Tomáš Bolek
1   Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
,
Linda Kühnelová
1   Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
,
Ingrid Škorňová
2   Department of Hematology and Blood Transfusion, National Centre of Hemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
,
Peter Kubisz
2   Department of Hematology and Blood Transfusion, National Centre of Hemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
,
Ján Staško
2   Department of Hematology and Blood Transfusion, National Centre of Hemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
,
Marián Mokáň
1   Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
› Author Affiliations
Funding This study was supported by project of Slovak Research and Development Agency (APVV) 16-0020 and by research project of Research Agency of Slovak Ministry of Education, Science and Sports (VEGA) 1/0090/20.

Abstract

Direct oral anticoagulants (DOACs) are increasingly used worldwide for the prevention of stroke in patients with atrial fibrillation and to prevent or treat venous thromboembolism. In situations such as serious bleeding, the need for urgent surgery/intervention or the management of a thromboembolic event, the laboratory measurement of DOACs levels or anticoagulant activity may be required. Rotational thromboelastometry (ROTEM) is a viscoelastic hemostatic assay (VHA) which has been used in emergencies (trauma and obstetrics), and surgical procedures (cardiac surgery and liver transplants), but experience with this assay in DOACs-treated patients is still limited. This article reviews the use of ROTEM in the setting of DOACs therapy, focusing on DOACs-associated bleeding and the use of this VHA for the management of reversal strategies for DOACs-associated anticoagulation.

Ethical Approval

This research was conducted according to ethical standards. Formal approval is not needed for this type of study.




Publication History

Article published online:
15 June 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Kirchhof P, Benussi S, Kotecha D. et al; ESC Scientific Document Group. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 2016; 37 (38) 2893-2962
  • 2 Konstantinides SV, Meyer G, Becattini C. et al. ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 2020; 41 (04) 543-603
  • 3 Tran HA, Gibbs H, Merriman E. et al. New guidelines from the Thrombosis and Haemostasis Society of Australia and New Zealand for the diagnosis and management of venous thromboembolism. Med J Aust 2019; 210 (05) 227-235
  • 4 Connors JM. Testing and monitoring direct oral anticoagulants. Blood 2018; 132 (19) 2009-2015
  • 5 Durila M, Malošek M. Rotational thromboelastometry along with thromboelastography plays a critical role in the management of traumatic bleeding. Am J Emerg Med 2014; 32 (03) 288.e1-288.e3
  • 6 McCrossin KE, Bramley DE, Hessian E, Hutcheon E, Imberger G. Viscoelastic testing for hepatic surgery: a systematic review with meta-analysis-a protocol. Syst Rev 2016; 5 (01) 151
  • 7 Li C, Zhao Q, Yang K, Jiang L, Yu J. Thromboelastography or rotational thromboelastometry for bleeding management in adults undergoing cardiac surgery: a systematic review with meta-analysis and trial sequential analysis. J Thorac Dis 2019; 11 (04) 1170-1181
  • 8 Korpallová B, Samoš M, Bolek T. et al. Role of thromboelastography and rotational thromboelastometry in the management of cardiovascular diseases. Clin Appl Thromb Hemost 2018; 24 (08) 1199-1207
  • 9 Larsen JB, Hvas AM. Predictive value of whole blood and plasma coagulation tests for intra- and postoperative bleeding risk: a systematic review. Semin Thromb Hemost 2017; 43 (07) 772-805
  • 10 Crowther M, Cuker A. How can we reverse bleeding in patients on direct oral anticoagulants?. Kardiol Pol 2019; 77 (01) 3-11
  • 11 Levy JH, Douketis J, Weitz JI. Reversal agents for non-vitamin K antagonist oral anticoagulants. Nat Rev Cardiol 2018; 15 (05) 273-281
  • 12 Ruff CT, Giugliano RP, Braunwald E. et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 2014; 383 (9921): 955-962
  • 13 Chan NC, Eikelboom JW, Weitz JI. Evolving treatments for arterial and venous thrombosis: role of the direct oral anticoagulants. Circ Res 2016; 118 (09) 1409-1424
  • 14 Marco Garbayo JL, Koninckx Cañada M, Pérez Castelló I, Faus Soler MT, Perea Ribis M. Hospital admissions for bleeding events associated with treatment with apixaban, dabigatran and rivaroxaban. Eur J Hosp Pharm Sci Pract 2019; 26 (02) 106-112
  • 15 Sherwood MW, Nessel CC, Hellkamp AS. et al. Gastrointestinal bleeding in patients with atrial fibrillation treated with rivaroxaban or warfarin: ROCKET AF trial. J Am Coll Cardiol 2015; 66 (21) 2271-2281
  • 16 Weitz JI, Harenberg J. New developments in anticoagulants: past, present and future. Thromb Haemost 2017; 117 (07) 1283-1288
  • 17 Di Fusco SA, Lucà F, Benvenuto M. et al. Major bleeding with old and novel oral anticoagulants: how to manage it. Focus on reversal agents. Int J Cardiol 2018; 268: 75-79
  • 18 Cuker A, Siegal DM, Crowther MA, Garcia DA. Laboratory measurement of the anticoagulant activity of the non-vitamin K oral anticoagulants. J Am Coll Cardiol 2014; 64 (11) 1128-1139
  • 19 Drouet L, Bal Dit Sollier C, Steiner T, Purrucker J. Measuring non-vitamin K antagonist oral anticoagulant levels: when is it appropriate and which methods should be used?. Int J Stroke 2016; 11 (07) 748-758
  • 20 Dale BJ, Chan NC, Eikelboom JW. Laboratory measurement of the direct oral anticoagulants. Br J Haematol 2016; 172 (03) 315-336
  • 21 Cuker A. Laboratory measurement of the non-vitamin K antagonist oral anticoagulants: selecting the optimal assay based on drug, assay availability, and clinical indication. J Thromb Thrombolysis 2016; 41 (02) 241-247
  • 22 Favaloro EJ, Pasalic L, Curnow J, Lippi G. Laboratory monitoring or measurement of direct oral anticoagulants (DOACs): advantages, limitations and future challenges. Curr Drug Metab 2017; 18 (07) 598-608
  • 23 Noguez JH, Ritchie JC. Quantitation of the oral anticoagulants dabigatran, rivaroxaban, apixaban, and warfarin in plasma using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). Methods Mol Biol 2016; 1383: 21-27
  • 24 Boehr S, Haen E. Development of an UHPLC-UV-method for quantification of direct oral anticoagulants: apixaban, rivaroxaban, dabigatran, and its prodrug dabigatran etexilate in human serum. Ther Drug Monit 2017; 39 (01) 66-76
  • 25 Derogis PB, Sanches LR, de Aranda VF. et al. Determination of rivaroxaban in patient's plasma samples by anti-Xa chromogenic test associated to High Performance Liquid Chromatography tandem Mass Spectrometry (HPLC-MS/MS). PLoS One 2017; 12 (02) e0171272
  • 26 Hanada K, Matsumoto SI, Shibata S, Matsubara H, Tsukimura Y, Takahashi H. A quantitative LC/MSMS method for determination of edoxaban, a Xa inhibitor and its pharmacokinetic application in patients after total knee arthroplasty. Biomed Chromatogr 2018; 32 (06) e4213
  • 27 Lindahl S, Dyrkorn R, Spigset O, Hegstad S. Quantification of apixaban, dabigatran, edoxaban, and rivaroxaban in human serum by UHPLC-MS/MS-method development, validation, and application. Ther Drug Monit 2018; 40 (03) 369-376
  • 28 Stangier J, Feuring M. Using the HEMOCLOT direct thrombin inhibitor assay to determine plasma concentrations of dabigatran. Blood Coagul Fibrinolysis 2012; 23 (02) 138-143
  • 29 Samoš M, Stančiaková L, Ivanková J. et al. Monitoring of dabigatran therapy using Hemoclot(®) Thrombin Inhibitor assay in patients with atrial fibrillation. J Thromb Thrombolysis 2015; 39 (01) 95-100
  • 30 Marsch A, Macha K, Siedler G. et al. Direct oral anticoagulant plasma levels for the management of acute ischemic stroke. Cerebrovasc Dis 2019; 48 (1-2): 17-25
  • 31 Testa S, Legnani C, Antonucci E. et al; Coordinator of START2-Register. Drug levels and bleeding complications in atrial fibrillation patients treated with direct oral anticoagulants. J Thromb Haemost 2019; 17 (07) 1064-1072
  • 32 Fagundes V, Mesquita M. Two dabigatran fast reversals in a 4-month period—a case report. Eur J Case Rep Intern Med 2019; 6 (12) 001311
  • 33 Samama MM, Amiral J, Guinet C, Perzborn E, Depasse F. An optimised, rapid chromogenic assay, specific for measuring direct factor Xa inhibitors (rivaroxaban) in plasma. Thromb Haemost 2010; 104 (05) 1078-1079
  • 34 Amiral J, Dunois C, Amiral C, Seghatchian J. Anti-Xa bioassays for the laboratory measurement of direct factor Xa inhibitors in plasma, in selected patients. Transfus Apheresis Sci 2016; 55 (02) 249-261
  • 35 Iapichino GE, Bianchi P, Ranucci M, Baryshnikova E. Point-of-care coagulation tests monitoring of direct oral anticoagulants and their reversal therapy: state of the art. Semin Thromb Hemost 2017; 43 (04) 423-432
  • 36 Xu Y, Wu W, Wang L. et al. Differential profiles of thrombin inhibitors (heparin, hirudin, bivalirudin, and dabigatran) in the thrombin generation assay and thromboelastography in vitro. Blood Coagul Fibrinolysis 2013; 24 (03) 332-338
  • 37 Henskens YMC, Gulpen AJW, van Oerle R. et al. Detecting clinically relevant rivaroxaban or dabigatran levels by routine coagulation tests or thromboelastography in a cohort of patients with atrial fibrillation. Thromb J 2018; 16: 3
  • 38 Cotton BA, McCarthy JJ, Holcomb JB. Acutely injured patients on dabigatran. N Engl J Med 2011; 365 (21) 2039-2040
  • 39 Aron JL, Gosselin R, Moll S, Arkin CF, Mantha S. Effects of recombinant factor VIIa on thrombin generation and thromboelastography in a patient with dabigatran-associated intracranial hemorrhage. J Thromb Thrombolysis 2014; 37 (02) 76-79
  • 40 Stein P, Bosshart M, Brand B, Schlicker A, Spahn DR, Bettex D. Dabigatran anticoagulation and Stanford type A aortic dissection: lethal coincidence: case report with literature review. Acta Anaesthesiol Scand 2014; 58 (05) 630-637
  • 41 Taune V, Wallén H, Ågren A. et al. Whole blood coagulation assays ROTEM and T-TAS to monitor dabigatran treatment. Thromb Res 2017; 153: 76-82
  • 42 Dinkelaar J, Patiwael S, Harenberg J, Leyte A, Brinkman HJ. Global coagulation tests: their applicability for measuring direct factor Xa- and thrombin inhibition and reversal of anticoagulation by prothrombin complex concentrate. Clin Chem Lab Med 2014; 52 (11) 1615-1623
  • 43 Tsantes AE, Kyriakou E, Ikonomidis I. et al. Comparative assessment of the anticoagulant activity of rivaroxaban and dabigatran in patients with nonvalvular atrial fibrillation: a noninterventional study. Medicine (Baltimore) 2016; 95 (14) e3037
  • 44 Eller T, Busse J, Dittrich M. et al. Dabigatran, rivaroxaban, apixaban, argatroban and fondaparinux and their effects on coagulation POC and platelet function tests. Clin Chem Lab Med 2014; 52 (06) 835-844
  • 45 Seyve L, Richarme C, Polack B, Marlu R. Impact of four direct oral anticoagulants on rotational thromboelastometry (ROTEM). Int J Lab Hematol 2018; 40 (01) 84-93
  • 46 Martin AC, Gouin-Thibault I, Siguret V. et al. Multimodal assessment of non-specific hemostatic agents for apixaban reversal. J Thromb Haemost 2015; 13 (03) 426-436
  • 47 Escolar G, Fernandez-Gallego V, Arellano-Rodrigo E. et al. Reversal of apixaban induced alterations in hemostasis by different coagulation factor concentrates: significance of studies in vitro with circulating human blood. PLoS One 2013; 8 (11) e78696
  • 48 Mahamad S, Chaudhry H, Nisenbaum R. et al. Exploring the effect of factor Xa inhibitors on rotational thromboelastometry: a case series of bleeding patients. J Thromb Thrombolysis 2019; 47 (02) 272-279
  • 49 Adelmann D, Wiegele M, Wohlgemuth RK. et al. Measuring the activity of apixaban and rivaroxaban with rotational thrombelastometry. Thromb Res 2014; 134 (04) 918-923
  • 50 Körber MK, Langer E, Ziemer S, Perzborn E, Gericke C, Heymann Cv. Measurement and reversal of prophylactic and therapeutic peak levels of rivaroxaban: an in vitro study. Clin Appl Thromb Hemost 2014; 20 (07) 735-740
  • 51 Perzborn E, Heitmeier S, Laux V, Buchmüller A. Reversal of rivaroxaban-induced anticoagulation with prothrombin complex concentrate, activated prothrombin complex concentrate and recombinant activated factor VII in vitro. Thromb Res 2014; 133 (04) 671-681
  • 52 Escolar G, Arellano-Rodrigo E, Lopez-Vilchez I. et al. Reversal of rivaroxaban-induced alterations on hemostasis by different coagulation factor concentrates—in vitro studies with steady and circulating human blood. Circ J 2015; 79 (02) 331-338
  • 53 Casutt M, Konrad C, Schuepfer G. Effect of rivaroxaban on blood coagulation using the viscoelastic coagulation test ROTEM™. Anaesthesist 2012; 61 (11) 948-953
  • 54 Chojnowski K, Górski T, Robak M, Treliński J. Effects of rivaroxaban therapy on ROTEM coagulation parameters in patients with venous thromboembolism. Adv Clin Exp Med 2015; 24 (06) 995-1000
  • 55 Fontana P, Alberio L, Angelillo-Scherrer A. et al. Impact of rivaroxaban on point-of-care assays. Thromb Res 2017; 153: 65-70
  • 56 Schenk B, Goerke S, Beer R, Helbok R, Fries D, Bachler M. Four-factor prothrombin complex concentrate improves thrombin generation and prothrombin time in patients with bleeding complications related to rivaroxaban: a single-center pilot trial. Thromb J 2018; 16: 1
  • 57 Dias JD, Lopez-Espina CG, Ippolito J. et al. Rapid point-of-care detection and classification of direct-acting oral anticoagulants with the TEG 6s: implications for trauma and acute care surgery. J Trauma Acute Care Surg 2019; 87 (02) 364-370
  • 58 Artang R, Anderson M, Nielsen JD. Fully automated thromboelastograph TEG 6s to measure anticoagulant effects of direct oral anticoagulants in healthy male volunteers. Res Pract Thromb Haemost 2019; 3 (03) 391-396
  • 59 Bliden KP, Chaudhary R, Mohammed N. et al. Determination of non-vitamin K oral anticoagulant (NOAC) effects using a new-generation thrombelastography TEG 6s system. J Thromb Thrombolysis 2017; 43 (04) 437-445
  • 60 Vedovati MC, Mosconi MG, Isidori F, Agnelli G, Becattini C. Global thromboelastometry in patients receiving direct oral anticoagulants: the RO-DOA study. J Thromb Thrombolysis 2020; 49 (02) 251-258
  • 61 Samoš M, Stančiaková L, Škorňová I. et al. Review of the pharmacology of the emerging possibilities of the direct oral anticoagulants' reversal. Curr Drug Metab 2017; 18 (07) 643-650
  • 62 Herrmann R, Thom J, Wood A, Phillips M, Muhammad S, Baker R. Thrombin generation using the calibrated automated thrombinoscope to assess reversibility of dabigatran and rivaroxaban. Thromb Haemost 2014; 111 (05) 989-995
  • 63 Grottke O, van Ryn J, Spronk HM, Rossaint R. Prothrombin complex concentrates and a specific antidote to dabigatran are effective ex-vivo in reversing the effects of dabigatran in an anticoagulation/liver trauma experimental model. Crit Care 2014; 18 (01) R27
  • 64 Sølbeck S, Nilsson CU, Engström M, Ostrowski SR, Johansson PI. Dabigatran and its reversal with recombinant factor VIIa and prothrombin complex concentrate: a Sonoclot in vitro study. Scand J Clin Lab Invest 2014; 74 (07) 591-598
  • 65 Hoffman M, Volovyk Z, Monroe DM. Reversal of dabigatran effects in models of thrombin generation and hemostasis by factor VIIa and prothrombin complex concentrate. Anesthesiology 2015; 122 (02) 353-362
  • 66 Honickel M, Treutler S, van Ryn J, Tillmann S, Rossaint R, Grottke O. Reversal of dabigatran anticoagulation ex vivo: porcine study comparing prothrombin complex concentrates and idarucizumab. Thromb Haemost 2015; 113 (04) 728-740
  • 67 Akman N, Braunschweig T, Honickel M. et al. Reversal of dabigatran by intraosseous or intravenous idarucizumab in a porcine polytrauma model. Br J Anaesth 2018; 120 (05) 978-987
  • 68 Martin AC, Le Bonniec B, Fischer AM. et al. Evaluation of recombinant activated factor VII, prothrombin complex concentrate, and fibrinogen concentrate to reverse apixaban in a rabbit model of bleeding and thrombosis. Int J Cardiol 2013; 168 (04) 4228-4233
  • 69 Godier A, Miclot A, Le Bonniec B. et al. Evaluation of prothrombin complex concentrate and recombinant activated factor VII to reverse rivaroxaban in a rabbit model. Anesthesiology 2012; 116 (01) 94-102
  • 70 Körber MK, Langer E, Kaufner L, Sander M, Von Heymann C. In vitro reversal of supratherapeutic rivaroxaban levels with coagulation factor concentrates. Blood Transfus 2016; 14 (05) 481-486
  • 71 Schenk B, Würtinger P, Streif W, Sturm W, Fries D, Bachler M. Ex vivo reversal of effects of rivaroxaban evaluated using thromboelastometry and thrombin generation assay. Br J Anaesth 2016; 117 (05) 583-591
  • 72 Bar J, David A, Khader T, Mulcare M, Tedeschi C. Assessing Coagulation by Rotational Thromboelastometry (ROTEM) in rivaroxaban-anticoagulated blood using hemostatic agents. Prehosp Disaster Med 2017; 32 (05) 580-587