Digestive Disease Interventions 2024; 08(01): 82-91
DOI: 10.1055/s-0043-1772164
Review Article

Transarterial Radioembolization for Hepatic Malignancies in North and South America

1   Department of Interventional Radiology, Radiology Institute, University of Sao Paulo Medical School, São Paulo/SP, Brazil
,
1   Department of Interventional Radiology, Radiology Institute, University of Sao Paulo Medical School, São Paulo/SP, Brazil
,
2   Department of Radiology, MedStar Georgetown University Hospital, Washington, District of Columbia
,
2   Department of Radiology, MedStar Georgetown University Hospital, Washington, District of Columbia
› Author Affiliations

Abstract

Transarterial radioembolization (TARE) with yttrium 90 is increasingly utilized for the treatment of hepatic neoplasms, whether primary (particularly hepatocellular carcinoma [HCC]) or metastatic (particularly colorectal). Extensive data and practical experience have led to a better understanding of its most appropriate usage and optimal techniques, particularly regarding dosimetry. Different clinical contexts and technical parameters allow its use with either palliative or curative intent. Improved patient outcomes have led to its inclusion in management guidelines of HCC and colorectal cancer. While available in multiple centers in the United States and Canada, its availability in South America is still very limited. The objective of this article is to review available treatment platforms, indications, techniques, recent advances, and clinical results, as well as briefly explore the disparities in availability throughout the United States.



Publication History

Received: 08 December 2022

Accepted: 05 July 2023

Article published online:
03 August 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Salem R, Lewandowski RJ, Gates VL. et al; Technology Assessment Committee, Interventional Oncology Task Force of the Society of Interventional Radiology. Research reporting standards for radioembolization of hepatic malignancies. J Vasc Interv Radiol 2011; 22 (03) 265-278
  • 2 Salem R, Thurston KG. Radioembolization with 90yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: Technical and methodologic considerations. J Vasc Interv Radiol 2006; 17 (08) 1251-1278
  • 3 Miller FH, Lopes Vendrami C, Gabr A. et al. Evolution of radioembolization in treatment of hepatocellular carcinoma: a pictorial review. Radiographics 2021; 41 (06) 1802-1818
  • 4 Tong AK, Kao YH, Too CW, Chin KF, Ng DC, Chow PK. Yttrium-90 hepatic radioembolization: clinical review and current techniques in interventional radiology and personalized dosimetry. Br J Radiol 2016; 89 (1062) 20150943
  • 5 Guiu B, Garin E, Allimant C, Edeline J, Salem R. TARE in hepatocellular carcinoma: from the right to the left of BCLC. Cardiovasc Intervent Radiol 2022; 45 (11) 1599-1607
  • 6 Tohme S, Bou Samra P, Kaltenmeier C, Chidi AP, Varley PR, Tsung A. Radioembolization for hepatocellular carcinoma: a nationwide 10-year experience. J Vasc Interv Radiol 2018; 29 (07) 912-919.e2
  • 7 Cassinotto C, Nogue E, Morell M, Panaro F, Molinari N, Guiu B. Changing trends in hepatocellular carcinoma management: results from a nationwide database in the last decade. Eur J Cancer 2021; 146: 48-55
  • 8 Reig M, Forner A, Rimola J. et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol 2022; 76 (03) 681-693
  • 9 d'Abadie P, Hesse M, Louppe A, Lhommel R, Walrand S, Jamar F. Microspheres used in liver radioembolization: from conception to clinical effects. Molecules 2021; 26 (13) 3966
  • 10 Manchec B, Kokabi N, Narayanan G. et al. Radioembolization of secondary hepatic malignancies. Semin Intervent Radiol 2021; 38 (04) 445-452
  • 11 Lee EJ, Chung HW, Jo JH, So Y. Radioembolization for the treatment of primary and metastatic liver cancers. Nucl Med Mol Imaging 2019; 53 (06) 367-373
  • 12 Cremonesi M, Chiesa C, Strigari L. et al. Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective. Front Oncol 2014; 4: 210
  • 13 Toskich BB, Liu DM. Y90 radioembolization dosimetry: concepts for the interventional radiologist. Tech Vasc Interv Radiol 2019; 22 (02) 100-111
  • 14 Stella M, Braat AJAT, van Rooij R, de Jong HWAM, Lam MGEH. Holmium-166 radioembolization: current status and future prospective. Cardiovasc Intervent Radiol 2022; 45 (11) 1634-1645
  • 15 Villalobos A, Soliman MM, Majdalany BS. et al. Yttrium-90 radioembolization dosimetry: what trainees need to know. Semin Intervent Radiol 2020; 37 (05) 543-554
  • 16 Ward TJ, Louie JD, Sze DY. Yttrium-90 radioembolization with resin microspheres without routine embolization of the gastroduodenal artery. J Vasc Interv Radiol 2017; 28 (02) 246-253
  • 17 Salem R, Gabr A, Riaz A. et al. Institutional decision to adopt Y90 as primary treatment for hepatocellular carcinoma informed by a 1,000-patient 15-year experience. Hepatology 2018; 68 (04) 1429-1440
  • 18 Lewandowski RJ, Toskich BB, Brown DB, El-Haddad G, Padia SA. Role of radioembolization in metastatic neuroendocrine tumors. Cardiovasc Intervent Radiol 2022; 45 (11) 1590-1598
  • 19 Kim AY, Unger K, Wang H, Pishvaian MJ. Incorporating yttrium-90 trans-arterial radioembolization (TARE) in the treatment of metastatic pancreatic adenocarcinoma: a single center experience. BMC Cancer 2016; 16: 492
  • 20 Feretis M, Solodkyy A. Yttrium-90 radioembolization for unresectable hepatic metastases of breast cancer: a systematic review. World J Gastrointest Oncol 2020; 12 (02) 228-236
  • 21 Jia Z, Jiang G, Zhu C, Wang K, Li S, Qin X. A systematic review of yttrium-90 radioembolization for unresectable liver metastases of melanoma. Eur J Radiol 2017; 92: 111-115
  • 22 Padia SA. Y90 clinical data update: cholangiocarcinoma, neuroendocrine tumor, melanoma, and breast cancer metastatic disease. Tech Vasc Interv Radiol 2019; 22 (02) 81-86
  • 23 Ness JR, Molvar C. Radioembolization of intrahepatic cholangiocarcinoma: patient selection, outcomes, and competing therapies. Semin Intervent Radiol 2021; 38 (04) 438-444
  • 24 Edeline J, Touchefeu Y, Guiu B. et al. Radioembolization plus chemotherapy for first-line treatment of locally advanced intrahepatic cholangiocarcinoma: a phase 2 clinical trial. JAMA Oncol 2020; 6 (01) 51-59
  • 25 Uddin O, Gabr A, Abouchaleh N. et al. Radioembolization for hepatocellular carcinoma in patients with hyperbilirubinemia. J Vasc Interv Radiol 2017; 28 (02) S74-S75
  • 26 Molvar C, Lewandowski R. Yttrium-90 radioembolization of malignant liver tumours. In: Kapoor BS, Lorenz JM. eds. Digestive Disease Interventions. Thieme; 2018: 223-232
  • 27 Ho S, Lau WY, Leung TW, Chan M, Johnson PJ, Li AK. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med 1997; 24 (03) 293-298
  • 28 Yorke ED, Jackson A, Rosenzweig KE, Braban L, Leibel SA, Ling CC. Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys 2005; 63 (03) 672-682
  • 29 Yu N, Srinivas SM, Difilippo FP. et al. Lung dose calculation with SPECT/CT for 90yittrium radioembolization of liver cancer. Int J Radiat Oncol Biol Phys 2013; 85 (03) 834-839
  • 30 Webster LA, Villalobos A, Majdalany BS, Bercu ZL, Gandhi RT, Kokabi N. Standard radiation dosimetry models: what interventional radiologists need to know. Semin Intervent Radiol 2021; 38 (04) 405-411
  • 31 Kao YH, Tan EH, Ng CE, Goh SW. Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres: a technical review. Ann Nucl Med 2011; 25 (07) 455-461
  • 32 SIR-Spheres. Accessed September 24, 2022 at: https://www.sirtex.com/br/clinicians/about-sir-spheres-resin-microspheres/
  • 33 Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989; 5 (05) 303-311 , discussion 312–313
  • 34 Grosser OS, Ulrich G, Furth C. et al. Intrahepatic activity distribution in radioembolization with yttrium-90-labeled resin microspheres using the body surface area method–a less than perfect model. J Vasc Interv Radiol 2015; 26 (11) 1615-1621
  • 35 Toohey RE, Stabin MG, Watson EE. The AAPM/RSNA physics tutorial for residents: internal radiation dosimetry: principles and applications. Radiographics 2000; 20 (02) 533-546 , quiz 531–532
  • 36 Sarwar A, Kudla A, Weinstein JL. et al. Yttrium-90 radioembolization using MIRD dosimetry with resin microspheres. Eur Radiol 2021; 31 (03) 1316-1324
  • 37 Gulec SA, Mesoloras G, Stabin M. Dosimetric techniques in 90Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations. J Nucl Med 2006; 47 (07) 1209-1211
  • 38 Gnesin S, Canetti L, Adib S. et al. Partition model-based 99mTc-MAA SPECT/CT predictive dosimetry compared with 90Y TOF PET/CT posttreatment dosimetry in radioembolization of hepatocellular carcinoma: a quantitative agreement comparison. J Nucl Med 2016; 57 (11) 1672-1678
  • 39 Spahr N, Schilling P, Thoduka S, Abolmaali N, Schenk A. Predictive SIRT dosimetry based on a territorial model. EJNMMI Phys 2017; 4 (01) 25
  • 40 Thomas MA, Mahvash A, Abdelsalam M, Kaseb AO, Kappadath SC. Planning dosimetry for 90 Y radioembolization with glass microspheres: evaluating the fidelity of 99m Tc-MAA and partition model predictions. Med Phys 2020; 47 (10) 5333-5342
  • 41 Weber M, Lam M, Chiesa C. et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 2022; 49 (05) 1682-1699
  • 42 Chiesa C, Mira M, Maccauro M. et al. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur J Nucl Med Mol Imaging 2015; 42 (11) 1718-1738
  • 43 Garin E, Tselikas L, Guiu B. et al; DOSISPHERE-01 Study Group. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol 2021; 6 (01) 17-29
  • 44 Levillain H, Bagni O, Deroose CM. et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging 2021; 48 (05) 1570-1584
  • 45 Salem R, Padia SA, Lam M. et al. Clinical, dosimetric, and reporting considerations for Y-90 glass microspheres in hepatocellular carcinoma: updated 2022 recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging 2023; 50 (02) 328-343
  • 46 Vilgrain V, Pereira H, Assenat E. et al; SARAH Trial Group. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial. Lancet Oncol 2017; 18 (12) 1624-1636
  • 47 Chow PKH, Gandhi M, Tan SB. et al; Asia-Pacific Hepatocellular Carcinoma Trials Group. SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma. J Clin Oncol 2018; 36 (19) 1913-1921
  • 48 Ricke J, Klümpen HJ, Amthauer H. et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J Hepatol 2019; 71 (06) 1164-1174
  • 49 European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu. European Association for the Study of the Liver. EASL Clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2018; 69 (01) 182-236
  • 50 Heimbach JK, Kulik LM, Finn RS. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67 (01) 358-380
  • 51 Marrero JA, Kulik LM, Sirlin CB. et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018; 68 (02) 723-750
  • 52 Garin E, Lenoir L, Edeline J. et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. Eur J Nucl Med Mol Imaging 2013; 40 (07) 1057-1068
  • 53 Garin E, Rolland Y, Pracht M. et al. High impact of macroaggregated albumin-based tumour dose on response and overall survival in hepatocellular carcinoma patients treated with 90 Y-loaded glass microsphere radioembolization. Liver Int 2017; 37 (01) 101-110
  • 54 Spreafico C, Sposito C, Vaiani M. et al. Development of a prognostic score to predict response to yttrium-90 radioembolization for hepatocellular carcinoma with portal vein invasion. J Hepatol 2018; 68 (04) 724-732
  • 55 Bruix J, Raoul JL, Sherman M. et al. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. J Hepatol 2012; 57 (04) 821-829
  • 56 Cardarelli-Leite L, Chung J, Klass D. et al. Ablative transarterial radioembolization improves survival in patients with HCC and portal vein tumor thrombus. Cardiovasc Intervent Radiol 2020; 43 (03) 411-422
  • 57 Finn RS, Qin S, Ikeda M. et al; IMbrave150 Investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020; 382 (20) 1894-1905
  • 58 Llovet JM, De Baere T, Kulik L. et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021; 18 (05) 293-313
  • 59 Llovet JM, Real MI, Montaña X. et al; Barcelona Liver Cancer Group. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 2002; 359 (9319) 1734-1739
  • 60 Salem R, Gordon AC, Mouli S. et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology 2016; 151 (06) 1155-1163.e2
  • 61 Salem R, Gilbertsen M, Butt Z. et al. Increased quality of life among hepatocellular carcinoma patients treated with radioembolization, compared with chemoembolization. Clin Gastroenterol Hepatol 2013; 11 (10) 1358-1365.e1
  • 62 Yang Y, Si T. Yttrium-90 transarterial radioembolization versus conventional transarterial chemoembolization for patients with hepatocellular carcinoma: a systematic review and meta-analysis. Cancer Biol Med 2018; 15 (03) 299-310
  • 63 Lewandowski RJ, Kulik LM, Riaz A. et al. A comparative analysis of transarterial downstaging for hepatocellular carcinoma: chemoembolization versus radioembolization. Am J Transplant 2009; 9 (08) 1920-1928
  • 64 Gabr A, Kulik L, Mouli S. et al. Liver transplantation following yttrium-90 radioembolization: 15-year experience in 207-patient cohort. Hepatology 2021; 73 (03) 998-1010
  • 65 Dhondt E, Lambert B, Hermie L. et al. 90Y radioembolization versus drug-eluting bead chemoembolization for unresectable hepatocellular carcinoma: results from the TRACE Phase II Randomized Controlled Trial. Radiology 2022; 303 (03) 699-710
  • 66 Salem R, Johnson GE, Kim E. et al. Yttrium-90 radioembolization for the treatment of solitary, unresectable HCC: the LEGACY study. Hepatology 2021; 74 (05) 2342-2352
  • 67 Lewandowski RJ, Gabr A, Abouchaleh N. et al. Radiation segmentectomy: potential curative therapy for early hepatocellular carcinoma. Radiology 2018; 287 (03) 1050-1058
  • 68 Garin E, Rolland Y, Lenoir L. et al. Utility of quantitative Tc-MAA SPECT/CT for yttrium-labelled microsphere treatment planning: calculating vascularized hepatic volume and dosimetric approach. Int J Mol Imaging 2011; 2011: 398051
  • 69 Gabr A, Riaz A, Johnson GE. et al. Correlation of Y90-absorbed radiation dose to pathological necrosis in hepatocellular carcinoma: confirmatory multicenter analysis in 45 explants. Eur J Nucl Med Mol Imaging 2021; 48 (02) 580-583
  • 70 Montazeri SA, De la Garza-Ramos C, Lewis AR. et al. Hepatocellular carcinoma radiation segmentectomy treatment intensification prior to liver transplantation increases rates of complete pathologic necrosis: an explant analysis of 75 tumors. Eur J Nucl Med Mol Imaging 2022; 49 (11) 3892-3897
  • 71 Mazzaferro V, Sposito C, Bhoori S. et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: a phase 2 study. Hepatology 2013; 57 (05) 1826-1837
  • 72 Toskich B, Vidal LL, Olson MT. et al. Pathologic response of hepatocellular carcinoma treated with yttrium-90 glass microsphere radiation segmentectomy prior to liver transplantation: a validation study. J Vasc Interv Radiol 2021; 32 (04) 518-526.e1
  • 73 Garin E, Lenoir L, Rolland Y. et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med 2012; 53 (02) 255-263
  • 74 Hermann AL, Dieudonné A, Ronot M. et al; SARAH Trial Group. Relationship of tumor radiation-absorbed dose to survival and response in hepatocellular carcinoma treated with transarterial radioembolization with 90Y in the SARAH study. Radiology 2020; 296 (03) 673-684
  • 75 Padia SA, Kwan SW, Roudsari B, Monsky WL, Coveler A, Harris WP. Superselective yttrium-90 radioembolization for hepatocellular carcinoma yields high response rates with minimal toxicity. J Vasc Interv Radiol 2014; 25 (07) 1067-1073
  • 76 Salem R, Padia SA, Lam M. et al. Clinical and dosimetric considerations for Y90: recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging 2019; 46 (08) 1695-1704
  • 77 Gabr A, Ranganathan S, Mouli SK. et al. Streamlining radioembolization in UNOS T1/T2 hepatocellular carcinoma by eliminating lung shunt estimation. J Hepatol 2020; 72 (06) 1151-1158
  • 78 Qadan M, Fong ZV, Delman AM, Gabr A, Salem R, Shah SA. Review of use of Y90 as a bridge to liver resection and transplantation in hepatocellular carcinoma. J Gastrointest Surg 2021; 25 (10) 2690-2699
  • 79 Gaba RC, Lewandowski RJ, Kulik LM. et al. Radiation lobectomy: preliminary findings of hepatic volumetric response to lobar yttrium-90 radioembolization. Ann Surg Oncol 2009; 16 (06) 1587-1596
  • 80 Vouche M, Lewandowski RJ, Atassi R. et al. Radiation lobectomy: time-dependent analysis of future liver remnant volume in unresectable liver cancer as a bridge to resection. J Hepatol 2013; 59 (05) 1029-1036
  • 81 Guiu B, Herrero A, Panaro F. Liver venous deprivation: a bright future for liver metastases-but what about hepatocellular carcinoma?. Hepatobiliary Surg Nutr 2021; 10 (02) 270-272
  • 82 Bekki Y, Marti J, Toshima T. et al. A comparative study of portal vein embolization versus radiation lobectomy with yttrium-90 microspheres in preparation for liver resection for initially unresectable hepatocellular carcinoma. Surgery 2021; 169 (05) 1044-1051
  • 83 Siegel RL, Miller KD, Goding Sauer A. et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020; 70 (03) 145-164
  • 84 Benson AB, Venook AP, Al-Hawary MM. et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2021; 19 (03) 329-359
  • 85 Ruers T, Van Coevorden F, Punt CJ. et al; European Organisation for Research and Treatment of Cancer (EORTC), Gastro-Intestinal Tract Cancer Group, Arbeitsgruppe Lebermetastasen und tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO), National Cancer Research Institute Colorectal Clinical Study Group (NCRI CCSG). Local treatment of unresectable colorectal liver metastases: results of a randomized Phase II trial. J Natl Cancer Inst 2017; 109 (09) djx015
  • 86 Van Cutsem E, Cervantes A, Adam R. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016; 27 (08) 1386-1422
  • 87 Wasan HS, Gibbs P, Sharma NK. et al; FOXFIRE Trial Investigators, SIRFLOX Trial Investigators, FOXFIRE-Global Trial Investigators. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol 2017; 18 (09) 1159-1171
  • 88 van Hazel GA, Heinemann V, Sharma NK. et al. SIRFLOX: randomized phase III trial comparing first-line mFOLFOX6 (plus or minus bevacizumab) versus mFOLFOX6 (plus or minus bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol 2016; 34 (15) 1723-1731
  • 89 Gibbs P, Heinemann V, Sharma NK. et al; SIRFLOX and FOXFIRE Global Trial Investigators. Effect of primary tumor side on survival outcomes in untreated patients with metastatic colorectal cancer when selective internal radiation therapy is added to chemotherapy: combined analysis of two randomized controlled studies. Clin Colorectal Cancer 2018; 17 (04) e617-e629
  • 90 Mulcahy MF, Mahvash A, Pracht M. et al; EPOCH Investigators. Radioembolization with chemotherapy for colorectal liver metastases: a randomized, open-label, international, multicenter, phase III trial. J Clin Oncol 2021; 39 (35) 3897-3907
  • 91 Emmons EC, Bishay S, Du L. et al. Survival and toxicities after 90Y transarterial radioembolization of metastatic colorectal cancer in the RESIN registry. Radiology 2022; 305 (01) 228-236
  • 92 Liddell RP. 90Y transarterial radioembolization for metastatic colorectal cancer. Radiology 2022; 305 (01) 237-238
  • 93 Entezari P, Gabr A, Salem R, Lewandowski RJ. Yttrium-90 for colorectal liver metastasis - the promising role of radiation segmentectomy as an alternative local cure. Int J Hyperthermia 2022; 39 (01) 620-626
  • 94 Sankhla T, Cheng B, Nezami N. et al. Role of resin microsphere Y90 dosimetry in predicting objective tumor response, survival and treatment related toxicity in surgically unresectable colorectal liver metastasis: a retrospective single institution study. Cancers (Basel) 2021; 13 (19) 4908
  • 95 Castro MC, Massuda A, Almeida G. et al. Brazil's unified health system: the first 30 years and prospects for the future. Lancet 2019; 394 (10195): 345-356
  • 96 Paim J, Travassos C, Almeida C, Bahia L, Macinko J. The Brazilian health system: history, advances, and challenges. Lancet 2011; 377 (9779) 1778-1797
  • 97 The Brazilian Health Regulatory Agency (Anvisa). Accessed September 24, 2022 at: https://www.gov.br/anvisa/pt-br
  • 98 Agência Nacional de Saúde Suplementar. Accessed September 24, 2022 at: https://www.gov.br/ans/pt-br