Journal of Pediatric Neurology
DOI: 10.1055/s-0044-1786790
Special Issue Article

Lissencephaly, Pachygyrias, Band Heterotopias, RELN Pathway, and ARX Mutations (Incomplete Neuron Migration)

Laura Sciuto*
1   Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
,
Valeria Fichera*
1   Pediatrics Postgraduate Residency Program, University of Catania, Catania, Italy
,
Antonio Zanghì*
2   Department of Medical and Surgical Sciences and Advanced Technologies, Research Center for Surgery of Complex Malformation Syndromes of Transition and Adulthood, University of Catania, Catania, Italy
,
Michele Vecchio
3   Rehabilitation Unit, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
,
Raffaele Falsaperla
4   Neonatal Intensive Care unit and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
,
Sebastiano Galioto
5   Department of Medical Surgical Sciences and Advanced Technologies, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
,
Stefano Palmucci
6   Department of Medical Surgical Sciences and Advanced Technologies, IPTRA Unit, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
,
Giuseppe Belfiore
7   Department of Medical Surgical Sciences and Advanced Technologies, Unit of Radiology 1, University Hospital Policlinico “G. Rodolico-San Marco,” Catania, Italy
,
Claudia Di Napoli
8   Chair of Genetics, Department of Medicine and Surgery, Kore University, Enna, Italy
,
Agata Polizzi
9   Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
,
Andrea D. Praticò
10   Chair of Pediatrics, Department of Medicine and Surgery, Kore University, Enna, Italy
› Author Affiliations

Abstract

Lissencephaly (LIS) is a group of malformations of cortical development consisting of a defective neuronal migration that results in lack of formation of the normal cerebral convolutions. It includes a spectrum of defect with varying degrees of severity, from agyria and pachygyria to subcortical band heterotopia. The etiopathogenesis of LIS includes both genetic and environmental factors. Although nongenetic forms of LIS have been reported, genetic causes are certainly more frequent and to date 19 LIS-SBH-associated genes have been identified. Most common mutations involve LIS1, DCX, ARX, and RELN genes. Clinically affected individuals present with early hypotonia, which can progress to limb spasticity, seizures, and psychomotor retardation. Convulsive episodes usually appear early (first months of life) and include infantile spasms, akinetic or myoclonic seizures, up to the development of complex epileptic syndromes, including atypical absences, myoclonia, and partial or tonic–clonic seizures. Several clinical entities are associated with classical LIS, including the following: isolated lissencephaly sequence (ILS); Miller–Dieker syndrome (MDS; OMIM 247200); subcortical band heterotopia (OMIM 300067); X-linked LIS with abnormal genitalia; and LIS with cerebellar hypoplasia. Diagnosis primarily depends on genetic and neuroimaging. Magnetic resonance imaging (MRI) is the gold standard, and it detects the presence of thick cortical cortex, its location, and the layers' architecture. Based on neuroimaging, it is possible to distinguish six subtypes of gyral malformations. Clinical and therapeutic management of these patients is challenging, considering the necessity to face drug-resistant epilepsy, intellectual disability, spasticity, and dysphagia and feeding problems. At the present moment, no gene-specific treatment for LIS is available.

* These authors contributed equally to the article.




Publication History

Received: 27 November 2023

Accepted: 04 April 2024

Article published online:
11 May 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 2014; 13 (07) 710-726
  • 2 Praticò AD, Falsaperla R, Ruggieri M, Corsello G, Pavone P. Prognostic challenges of SCN1A genetic mutations: report on two children with mild features. J Pediatr Neurol 2016; 14: 82-88
  • 3 Dobyns WB. The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia 2010; 51 (Suppl. 01) 5-9
  • 4 Falsaperla R, D'Angelo G, Praticò AD. et al. Ketogenic diet for infants with epilepsy: a literature review. Epilepsy Behav 2020; 112: 107361
  • 5 Tan AP, Chong WK, Mankad K. Comprehensive genotype-phenotype correlation in lissencephaly. Quant Imaging Med Surg 2018; 8 (07) 673-693
  • 6 Pavone P, Praticò AD, Falsaperla R. et al. Congenital generalized hypertrichosis: the skin as a clue to complex malformation syndromes. Ital J Pediatr 2015; 41: 55
  • 7 Di Donato N, Chiari S, Mirzaa GM. et al. Lissencephaly: expanded imaging and clinical classification. Am J Med Genet A 2017; 173 (06) 1473-1488
  • 8 Pavone P, Praticò AD, Ruggieri M, Falsaperla R. Hypomelanosis of Ito: a round on the frequency and type of epileptic complications. Neurol Sci 2015; 36 (07) 1173-1180
  • 9 Valiente M, Marín O. Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 2010; 20 (01) 68-78
  • 10 Pavone P, Praticò AD, Ruggieri M. et al. Acquired peripheral neuropathy: a report on 20 children. Int J Immunopathol Pharmacol 2012; 25 (02) 513-517
  • 11 Dobyns WB, Guerrini R, Leventer RL. Malformations of cortical development. In: Swaiman KF, Ashwal S, Ferriero DM, Schor NF. eds. Swaiman's Pediatric Neurology: Principles and Practice. 5th ed.. Edinburgh: Elsevier Saunders; 2012: 202-231
  • 12 Pratico AD, Ruggieri M, Falsaperla R, Pavone P. A probable topiramate-induced limbs paraesthesia and rigid fingers flexion. Curr Drug Saf 2018; 13 (02) 131-136
  • 13 Wynshaw-Boris A, Pramparo T, Youn YH, Hirotsune S. Lissencephaly: mechanistic insights from animal models and potential therapeutic strategies. Semin Cell Dev Biol 2010; 21 (08) 823-830
  • 14 Pavone P, Nigro F, Falsaperla R. et al. Hemihydranencephaly: living with half brain dysfunction. Ital J Pediatr 2013; 39: 3
  • 15 Hebbar S, Mesngon MT, Guillotte AM, Desai B, Ayala R, Smith DS. Lis1 and Ndel1 influence the timing of nuclear envelope breakdown in neural stem cells. J Cell Biol 2008; 182 (06) 1063-1071
  • 16 Pavone P, Praticò AD, Gentile G. et al. A neurocutaneous phenotype with paired hypo- and hyperpigmented macules, microcephaly and stunted growth as prominent features. Eur J Med Genet 2016; 59 (05) 283-289
  • 17 Devisme L, Bouchet C, Gonzalès M. et al. Cobblestone lissencephaly: neuropathological subtypes and correlations with genes of dystroglycanopathies. Brain 2012; 135 (Pt 2): 469-482
  • 18 Ruggieri M, Praticò AD, Caltabiano R, Polizzi A. Rediagnosing one of Smith's patients (John McCann) with “neuromas tumours” (1849). Neurol Sci 2017; 38 (03) 493-499
  • 19 Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB. A developmental and genetic classification for malformations of cortical development. Neurology 2005; 65 (12) 1873-1887
  • 20 Incorpora G, Pavone P, Castellano-Chiodo D, Praticò AD, Ruggieri M, Pavone L. Gelastic seizures due to hypothalamic hamartoma: rapid resolution after endoscopic tumor disconnection. Neurocase 2013; 19 (05) 458-461
  • 21 Barkovich AJ. Imaging of the cobblestone lissencephalies. AJNR Am J Neuroradiol 1996; 17 (04) 615-618
  • 22 Vitaliti G, Praticò AD, Cimino C. et al. Hepatitis B vaccine in celiac disease: yesterday, today and tomorrow. World J Gastroenterol 2013; 19 (06) 838-845
  • 23 Di Donato N, Timms AE, Aldinger KA. et al; University of Washington Center for Mendelian Genomics. Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genet Med 2018; 20 (11) 1354-1364
  • 24 Leonardi S, Praticò AD, Lionetti E, Spina M, Vitaliti G, La Rosa M. Intramuscular vs intradermal route for hepatitis B booster vaccine in celiac children. World J Gastroenterol 2012; 18 (40) 5729-5733
  • 25 Leruez-Ville M, Ville Y. Fetal cytomegalovirus infection. Best Pract Res Clin Obstet Gynaecol 2017; 38: 97-107
  • 26 Palano GM, Praticò AD, Praticò ER. et al. Intossicazione accidentale da alcol etilico in un lattante di 30 giorni. Quadro clinico e follow-up neurologico. [Accidental ethyl alcohol intoxication in a 30-day-old infant. Clinical findings and neurological follow-up]. Minerva Pediatr 2007; 59 (03) 275-279
  • 27 Parrini E, Conti V, Dobyns WB, Guerrini R. Genetic basis of brain malformations. Mol Syndromol 2016; 7 (04) 220-233
  • 28 Fiumara A, Lanzafame G, Arena A. et al. COVID-19 pandemic outbreak and its psychological impact on patients with rare lysosomal diseases. J Clin Med 2020; 9 (09) 2716
  • 29 Egan MJ, Tan K, Reck-Peterson SL. Lis1 is an initiation factor for dynein-driven organelle transport. J Cell Biol 2012; 197 (07) 971-982
  • 30 Praticò AD, Leonardi S. Immunotherapy for food allergies: a myth or a reality?. Immunotherapy 2015; 7 (02) 147-161
  • 31 Moslehi M, Ng DCH, Bogoyevitch MA. Dynamic microtubule association of doublecortin X (DCX) is regulated by its C-terminus. Sci Rep 2017; 7 (01) 5245
  • 32 Salafia S, Praticò AD, Pizzo E, Greco F, Di Bella D. Hemiconvulsion-hemiplegia-epilepsy syndrome. Magnetic resonance findings in a 3-year-old boy. Neurol Neurochir Pol 2013; 47 (06) 584-589
  • 33 Colombo E, Galli R, Cossu G, Gécz J, Broccoli V. Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons. Dev Dyn 2004; 231 (03) 631-639
  • 34 Praticò AD, Ruggieri M. COVID-19 vaccination for children: may be necessary for the full eradication of the disease. Pediatr Res 2021; 90 (06) 1102-1103
  • 35 Hong SE, Shugart YY, Huang DT. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000; 26 (01) 93-96
  • 36 Ruggieri M, Polizzi A, Catanzaro S, Bianco ML, Praticò AD, Di Rocco C. Neurocutaneous melanocytosis (melanosis). Childs Nerv Syst 2020; 36 (10) 2571-2596
  • 37 Verloes A, Elmaleh M, Gonzales M, Laquerrière A, Gressens P. Lissencéphalies: aspects cliniques et génétiques. [Genetic and clinical aspects of lissencephaly]. Rev Neurol (Paris) 2007; 163 (05) 533-547
  • 38 Praticò AD, Mistrello G, La Rosa M. et al. Immunotherapy: a new horizon for egg allergy?. Expert Rev Clin Immunol 2014; 10 (05) 677-686
  • 39 Chong SS, Pack SD, Roschke AV. et al. A revision of the lissencephaly and Miller-Dieker syndrome critical regions in chromosome 17p13.3. Hum Mol Genet 1997; 6 (02) 147-155
  • 40 Praticò AD. COVID-19 pandemic for pediatric health care: disadvantages and opportunities. Pediatr Res 2021; 89 (04) 709-710
  • 41 Sweeney KJ, Clark GD, Prokscha A, Dobyns WB, Eichele G. Lissencephaly associated mutations suggest a requirement for the PAFAH1B heterotrimeric complex in brain development. Mech Dev 2000; 92 (02) 263-271
  • 42 Praticò AD, Giallongo A, Arrabito M. et al. SCN2A and its related epileptic phenotypes. J Pediatr Neurol 2023; 21 (03) 173-185
  • 43 Dobyns WB, Elias ER, Newlin AC, Pagon RA, Ledbetter DH. Causal heterogeneity in isolated lissencephaly. Neurology 1992; 42 (07) 1375-1388
  • 44 Praticò AD, Falsaperla R, Comella M, Belfiore G, Polizzi A, Ruggieri M. Case report: a gain-of-function of hamartin may lead to a distinct “inverse TSC1-hamartin” phenotype characterized by reduced cell growth. Front Pediatr 2023; 11: 1101026
  • 45 Saillour Y, Carion N, Quelin C. et al. LIS1-related isolated lissencephaly: spectrum of mutations and relationships with malformation severity. Arch Neurol 2009; 66 (08) 1007-1015
  • 46 Polizzi A, Finocchiaro M, Parano E, Pavone P, Musumeci S, Polizzi A. Recurrent peripheral neuropathy in a girl with celiac disease. J Neurol Neurosurg Psychiatry 2000; 68 (01) 104-105
  • 47 Iefremova V, Manikakis G, Krefft O. et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller-Dieker syndrome. Cell Rep 2017; 19 (01) 50-59
  • 48 Polizzi A, Pavone P, Parano E, Incorpora G, Ruggieri M. Lack of progression of brain atrophy in Aicardi-Goutières syndrome. Pediatr Neurol 2001; 24 (04) 300-302
  • 49 Leventer RJ, Pilz DT, Matsumoto N, Ledbetter DH, Dobyns WB. Lissencephaly and subcortical band heterotopia: molecular basis and diagnosis. Mol Med Today 2000; 6 (07) 277-284
  • 50 Nicita F, Ruggieri M, Polizzi A. et al. Seizures and epilepsy in Sotos syndrome: analysis of 19 Caucasian patients with long-term follow-up. Epilepsia 2012; 53 (06) e102-e105
  • 51 D'Agostino MD, Bernasconi A, Das S. et al. Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females. Brain 2002; 125 (Pt 11): 2507-2522
  • 52 Ruggieri M, Polizzi A. From Aldrovandi's “Homuncio” (1592) to Buffon's girl (1749) and the “Wart Man” of Tilesius (1793): antique illustrations of mosaicism in neurofibromatosis?. J Med Genet 2003; 40 (03) 227-232
  • 53 Leventer RJ. Genotype-phenotype correlation in lissencephaly and subcortical band heterotopia: the key questions answered. J Child Neurol 2005; 20 (04) 307-312
  • 54 Leuzzi V, Mastrangelo M, Polizzi A. et al. Report of two never treated adult sisters with aromatic L-amino Acid decarboxylase deficiency: a portrait of the natural history of the disease or an expanding phenotype?. JIMD Rep 2015; 15: 39-45
  • 55 Ross ME, Allen KM, Srivastava AK. et al. Linkage and physical mapping of X-linked lissencephaly/SBH (XLIS): a gene causing neuronal migration defects in human brain. Hum Mol Genet 1997; 6 (04) 555-562
  • 56 Pavone P, Spalice A, Polizzi A, Parisi P, Ruggieri M. Ohtahara syndrome with emphasis on recent genetic discovery. Brain Dev 2012; 34 (06) 459-468
  • 57 Pilz DT, Kuc J, Matsumoto N. et al. Subcortical band heterotopia in rare affected males can be caused by missense mutations in DCX (XLIS) or LIS1. Hum Mol Genet 1999; 8 (09) 1757-1760
  • 58 Ruggieri M, Rizzo R, Pavone P, Baieli S, Sorge G, Happle R. Temporal triangular alopecia in association with mental retardation and epilepsy in a mother and daughter. Arch Dermatol 2000; 136 (03) 426-427
  • 59 Sherr EH. The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr Opin Pediatr 2003; 15 (06) 567-571
  • 60 Ruggieri M, Gabriele AL, Polizzi A. et al. Natural history of neurofibromatosis type 2 with onset before the age of 1 year. Neurogenetics 2013; 14 (02) 89-98
  • 61 Friocourt G, Poirier K, Rakić S, Parnavelas JG, Chelly J. The role of ARX in cortical development. Eur J Neurosci 2006; 23 (04) 869-876
  • 62 Pavone P, Praticò AD, Pavone V. et al. Ataxia in children: early recognition and clinical evaluation. Ital J Pediatr 2017; 43 (01) 6
  • 63 Gupta B, Ramteke P, Paul VK, Kumar T, Das P. Ambiguous genitalia associated with an extremely rare syndrome: a case report of XLAG syndrome and review of the literature. Turk Patoloji Derg 2019; 35 (02) 162-165
  • 64 Ruggieri M. Mosaic (segmental) neurofibromatosis type 1 (NF1) and type 2 (NF2): no longer neurofibromatosis type 5 (NF5). Am J Med Genet 2001; 101 (02) 178-180
  • 65 Ffrench-Constant S, Kachramanoglou C, Jones B. et al. Fetal and neonatal MRI features of ARX-related lissencephaly presenting with neonatal refractory seizure disorder. Quant Imaging Med Surg 2019; 9 (11) 1767-1772
  • 66 Ruggieri M, McShane MA. Parental view of epilepsy in Angelman syndrome: a questionnaire study. Arch Dis Child 1998; 79 (05) 423-426
  • 67 Mochida GH. Genetics and biology of microcephaly and lissencephaly. Semin Pediatr Neurol 2009; 16 (03) 120-126
  • 68 Ruggieri M, Huson SM. The neurofibromatoses. An overview. Ital J Neurol Sci 1999; 20 (02) 89-108
  • 69 van Graan LA, Lemieux L, Chaudhary UJ. Methods and utility of EEG-fMRI in epilepsy. Quant Imaging Med Surg 2015; 5 (02) 300-312
  • 70 Ruggieri M. Cutis tricolor: congenital hyper- and hypopigmented lesions in a background of normal skin with and without associated systemic features: further expansion of the phenotype. Eur J Pediatr 2000; 159 (10) 745-749
  • 71 Kato M, Dobyns WB. X-linked lissencephaly with abnormal genitalia as a tangential migration disorder causing intractable epilepsy: proposal for a new term, “interneuronopathy”. J Child Neurol 2005; 20 (04) 392-397
  • 72 Falsaperla R, Praticò AD, Ruggieri M. et al. Congenital muscular dystrophy: from muscle to brain. Ital J Pediatr 2016; 42 (01) 78
  • 73 Bonneau D, Toutain A, Laquerrière A. et al. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings. Ann Neurol 2002; 51 (03) 340-349
  • 74 Yis U. Lissencephaly with brainstem and cerebellar hypoplasia and congenital cataracts. J Child Neurol 2015; 30 (05) 625-626
  • 75 Lossi L, Castagna C, Granato A, Merighi A. The Reeler mouse: a translational model of human neurological conditions, or simply a good tool for better understanding neurodevelopment?. J Clin Med 2019; 8 (12) 2099
  • 76 Valence S, Garel C, Barth M. et al. RELN and VLDLR mutations underlie two distinguishable clinico-radiological phenotypes. Clin Genet 2016; 90 (06) 545-549
  • 77 Koenig M, Dobyns WB, Di Donato N. Lissencephaly: update on diagnostics and clinical management. Eur J Paediatr Neurol 2021; 35: 147-152
  • 78 Roberts B. Neuronal migration disorders. Radiol Technol 2018; 89 (03) 279-295
  • 79 Vasung L, Rezayev A, Yun HJ. et al. Structural and diffusion MRI analyses with histological observations in patients with lissencephaly. Front Cell Dev Biol 2019; 7: 124
  • 80 Kolbjer S, Martin DA, Pettersson M, Dahlin M, Anderlid BM. Lissencephaly in an epilepsy cohort: molecular, radiological and clinical aspects. Eur J Paediatr Neurol 2021; 30: 71-81
  • 81 Lerman-Sagie T, Pogledic I, Leibovitz Z, Malinger G. A practical approach to prenatal diagnosis of malformations of cortical development. Eur J Paediatr Neurol 2021; 34: 50-61
  • 82 Brock S, Dobyns WB, Jansen A. PAFAH1B1-related lissencephaly/subcortical band heterotropia. In: Adam MP, Everman DB, Mirzaa GM. et al, eds. GeneReviews. Seattle, WA: University of Washington, Seattle; 1993-2022
  • 83 Manent JB, Wang Y, Chang Y, Paramasivam M, LoTurco JJ. Dcx reexpression reduces subcortical band heterotopia and seizure threshold in an animal model of neuronal migration disorder. Nat Med 2009; 15 (01) 84-90