Anästhesiol Intensivmed Notfallmed Schmerzther 2003; 38(12): 787-794
DOI: 10.1055/s-2003-45401
Originalie
© Georg Thieme Verlag Stuttgart · New York

Analyse von Flimmersignalen zur Abschätzung der Defibrillierbarkeit beim Kammerflimmern

Analysis of Ventricular Fibrillation Signals for the Evaluation of Defibrillation Success in the Treatment of Ventricular FibrillationW.  Lederer1 , K.  Rheinberger1 , V.  Lischke2 , A.  Amann1
  • 1Universitätsklinik für Anästhesie und Allgemeine Intensivmedizin, Leopold-Franzens Universität Innsbruck, Innsbruck, Österreich
  • 2Anästhesie-Abteilung und operative Intensivmedizin, Hochtaunus-Kliniken gGmbH, Bad Homburg
Further Information

Publication History

Publication Date:
10 December 2003 (online)

Zusammenfassung

Ziel der Studie: Die präzise Erkennung von Kammerflimmern (KF), die richtige Einschätzung der Defibrillierbarkeit und die Anpassung des Defibrillationspulses an den transthorakalen Widerstand können Strom-assoziierte Myokardschäden von unnötigen Defibrillationen vermeiden. Die herstellerspezifischen EKG-Amplitudenschwellwerte zur Abgrenzung von Asystolie und Ergebnisse verschiedener Studien über die Verwendbarkeit von passenden Parametern und Algorithmen zur Analyse von EKG Signalen beim KF wurden evaluiert. Methodik: Eine Hersteller- und Literaturüberblicksarbeit mit folgenden Parametern wurde durchgeführt: Amplitude, Frequenz, Bispektralanalyse, Fläche des Amplitudenspektrums, nicht-lineare Dynamik, N(α)-Histogramme, sowie eine Kombination von mehreren Parametern. Ergebnisse: Die EKG-Amplitudenschwellwerte zur Abgrenzung der Asystolie von KF sind bei den handelsüblichen Defibrillatoren unterschiedlich festgelegt. Wir stellen Möglichkeiten vor, wie die EKG-Analyse der nächste Defibrillatorgeneration optimiert werden könnte. Im Rahmen der erweiterten Wiederbelebungsmaßnahmen sollte die Wahrscheinlichkeit für einen Defibrillationserfolg abgeschätzt werden können. Die optimale Form des Defibrillationspulses sollte mittels des transthorakalen Widerstandes individuell bestimmbar sein. Beim prolongierten KF mit niedriger Amplitude sollte die Defibrillation erst versucht werden, nachdem die Koronararterienperfusion durch erweiterte Maßnahmen der Reanimation verbessert wurde und die charakteristischen Parameter des Flimmersignals zugenommen haben. Die kombinierte Auswertung von Flimmeramplitude und Flimmerfrequenz kann den Defibrillationserfolg genauer vorhersagen. Unter Einbindung weiterer Parameter könnte die Bestimmung des optimalen Defibrillationszeitpunktes optimiert werden. Die Anwendbarkeit der meisten Parameter unter Prähospitalbedingungen der kardiopulmonalen Wiederbelebung (CPR) wird derzeit durch die fehlende technische Machbarkeit einer online-Auswertung begrenzt. Schlussfolgerung: Die Flimmersignalanalyse sollte sowohl eine adäquate Flimmererkennung als auch eine verlässliche Vorhersage des Defibrillationserfolges ermöglichen. Passende Schwellwerte müssen festgelegt und Störeinflüsse von Reanimationsmaßnahmen auf die Datenanalyse vermindert werden. Die Flimmersignalanalyse ist eine Voraussetzung für eine individuell optimale Effektivität der Defibrillation und kann wesentlich zur Qualitätssteigerung der CPR beitragen.

Abstract

Objective: Precise detection of ventricular fibrillation (VF), reliable prediction of defibrillation success and adjustment of the discharge waveform to the patient's transthoracic impedance may contribute to a reduction of electricity-associated myocardial injury caused by unnecessary counter shocks. Specifically, asystole thresholds distinguish between VF and asystole, and thus prevent unnecessary defibrillation attempts. We reviewed various studies and manufacturer characteristics regarding the parameters and algorithms for analyzing arrhythmia ECG signals. Methods: Asystole threshold values of several defibrillator manufacturers were collected and a literature review was performed including the following parameters: amplitude, frequency, bispectral analysis, amplitude spectrum area, wavelets, nonlinear dynamics, N(α)histograms, and combinations of various parameters. Results: The manufacturer dependent asystole thresholds vary substantially. We show ways to optimize an ECG-based analysis for the next technological generation of defibrillators. During advanced cardiac life support (ACLS) the probability of defibrillation success should be estimated. Optimal defibrillation waveform, depending on transthoracic resistance, should be individually determined. In case of prolonged VF with a low ECG amplitude defibrillation should not be attempted unless coronary perfusion has been improved by further measures of ACLS. The combined evaluation of VF amplitude and frequency is effective in predicting defibrillation success. Estimation of further parameters is potentially useful for guiding optimal timing of defibrillation. At present, the implementation of most parameters in out-of-hospital cardiopulmonary resuscitation (CPR) is limited by the lack of technical feasibility of online computing. Conclusion: Analysis of VF ECG signals should allow adequate VF detection as well as prediction of defibrillation success. Suitable asystole thresholds for analysis of ECG signals have to be determined, and the adverse effects of CPR associated artefacts on data analysis have to be reduced. Analysis of VF ECG signals is a precondition of individually optimized defibrillation and may contribute substantially to an increased quality of CPR.

Literatur

  • 1 Kouwenhoven W B, Jude J R, Knickerbocker G G. Closed-chest ardiac massage.  J Am Med Ass. 1960;  173 1064-1067
  • 2 Zoll P M, Linenthal A J, Gibson W, Paul M H, Normal L R. Termination of ventricular fibrillation in man by an externally applied electric shock.  New Engl J Med. 1956;  254 727-732
  • 3 White R D. Technologic advances and program initiatives in public access defibrillation using automated external defibrillators.  Curr Opin Crit Care. 2001;  7 (3) 145-151
  • 4 Larsen M P, Eisenber M S, Cummins R O, Hallstrom A P. Predicting survival from out-of-hospital cardiac arrest: a graphic model.  Ann Emerg Med. 1993;  22 1652-1658
  • 5 Cobb L A, Fahrenbruch C E, Walsh T R. et al . Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation.  J Am Med Ass. 1999;  281 1182-1188
  • 6 Niemann J T, Cairns C B, Sharma J. et al . Treatment of prolonged ventricular fibrillation: immediate countershock versus high-dose epinephrine and CPR preceding countershock.  Circulation. 1992;  85 281-287
  • 7 Cruz B, Niemann J T. Experimental studies on precordial compression or defibrillation as initial interventions for ventricular fibrillation.  Crit Care Med. 2000;  28 225-227
  • 8 Niemann J T, Cruz B, Garner D. et al . Immediate countershock versus cardiopulmonary resuscitation before countershock in a 5-minute swine model of ventricular fibrillation arrest.  Ann Emerg Med. 2000;  36 543-546
  • 9 Wik L, Hansen T B, Fylling F. et al . Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: a randomized trial.  J Am Med Ass. 2003;  289 (11) 1389-1395
  • 10 Dahl C F, Ewy G A, Warner E D, Thomas E D. Myocardial necrosis from direct current countershock: effect of paddle electrode size and time interval between discharges.  Circulation. 1974;  50 956-961
  • 11 Babbs C F, Tacker W A, Van Fleet J F, Bourland J D, Geddes L A. Therapeutic indices for transchest defibrillator shocks: effective, damaging, and lethal electrical doses.  Am Heart J. 1980;  99 734-738
  • 12 van Fleet J F, Tacker W A, Geddes L A, Ferrous V J. Sequential cardiac morphologic alterations induced in dogs by single transthoracic damped sinusoidal wafeform defibrillator shocks.  Am J Vet Res. 1978;  39 271-278
  • 13 Caterine M R, Spencer K T, Pagan-Carlo L A, Smith R S, Buettner G R, Kerber R E. Direct current shocks to the heart generate free radicals: An electron paramagnetic resonance study.  J Am Coll Cardiol. 1996;  28 (6) 1598-1609
  • 14 Jian H, Kenknight B H, Rollins D L, Smith W M, Ideker R E. Ventriculalr defibrillation with triphasic waveforms.  Circulation NY. 2000;  101 (11) 1324-1328
  • 15 Niemann J T, Cairns C B. Hyperkalemia and ionized hypocalcemia during cardiac arrest and resuscitation: Possible culprits for postcountershock arrhythmias?.  Ann Emerg Med. 1999;  34 (1) 1-7
  • 16 Leng C T, Berger R D, Calkins H, Lardo A, Paradis N A, Halperin H R. Electrical induction of ventricular fibrillation for resuscitation from postcountershock pulseless and asystolic cardiac arrests.  Circulation NY. 2001;  104 (6) 723-728
  • 17 Xie J, Weil M H, Sun S. et al . High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction.  Circulation. 1997;  96 683-688
  • 18 Strohmenger H U, Wenzel V. Electrocardiographic prediction of cardiopulmonary resuscitation success.  Curr Opin Crit Care. 2000;  6 192-195
  • 19 Eftestol T, Sunde K, Steen P A. Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest.  Circulation. 2002;  105 (19) 2270-2273
  • 20 Yu T, Weil M H, Tang W, Sun S, Klouche K, Povoas H, Bisera J. Adverse outcomes of interrupted precordial compression during automated defibrillation.  Circulation. 2002;  106 (3) 368-372
  • 21 Feneley M P, Maier G W, Kern K B. et al . Influence of compression rate on initial success of resuscitation and 24 hour survival after prolonged manual cardiopulmonary resuscitation in dogs.  Circulation. 1988;  77 240-250
  • 22 Sato Y, Weil M H, Sun Tang W. et al . Adverse effects of interrupting precordial compression during cardiopulmonary resuscitation.  Crit Care Med. 1997;  25 733-736
  • 23 Noc M, Weil M H, Tang W. et al . Electrocardiographic prediction of the success of cardiac resuscitation.  Crit Care Med. 1999;  27 708-714
  • 24 Patwardhan A, Moghe S, Wang K. et al . Relation between ventricular fibrillation voltage and probability of defibrillation shocks: analysis using Hilbert transforms.  J Electrocardiol. 1998;  31 317-325
  • 25 Amann A, Rheinberger K, Achleitner U, Krismer A C, Lingnau W, Lindner K H, Wenzel V. The prediction of defibrillation outcome using a new combination of mean frequency and amplitude in porcine models of cardiac arrest.  Anesth Analg. 2002;  96 716-722
  • 26 Achleitner U, Wenzel V, Strohmenger H U. et al . The effects of repeated doses of vasopressin or epinephrine on ventricular fibrillationin a porcine model of prolonged cardiopulmonary resuscitation.  Anesth Analg. 2000;  90 1067-1075
  • 27 Achleitner U, Wenzel V, Strohmenger H U, Lindner K H, Baubin M A, Krismer A C, Mayr V D, Amann A. The beneficial effect of basic life support on ventricular fibrillation mean frequency and coronary perfusion pressure.  Resuscitation. 2001;  51 151-158
  • 28 Patwardhan A, Moghe S, Wang K. et al . Frequency modulation within electrocardiograms during ventricular fibrillation.  Am J Physiol Heart Circ Physiol. 2000;  279 825-835
  • 29 Small M, Yu D, Harrison R. Variation in the dominant period during ventricular fibrillation.  Med Biol Eng Comput. 2001;  im Druck
  • 30 Patwardhan A, Wang K, Moghe S. et al . Bispectral energies within electrocardiograms during ventricular fibrillation are correlated with defibrillation shock outcome.  Ann Biomed Eng. 1999;  27 171-179
  • 31 Povoas H P, Bisera J. Electrocardiographic waveform analysis for predicting the success of defibrillation.  Crit Care Med. 2000;  28 210-211
  • 32 Watson J N, Addison P S, Clegg P R. et al . A novel wavelet transform based analysis reveals hidden structure in ventricular fibrillation.  Resuscitation. 2000;  43 121-127
  • 33 Small M, Yu D, Harrison R. et al . Deterministic nonlinearity in ventricular fibrillation.  Chaos. 2000;  10 268-277
  • 34 Small M, Yu D, Harrison R. et al . Characterizing nonlinearity in ventricular fibrillation.  Comput Cardiol. 1999;  26 17-20
  • 35 Yu D, Small M, Harrison R. et al . Complexity measurements for analysis and diagnosis of early ventricular fibrillation.  Comput Cardiol. 1999;  26 21-24
  • 36 Yu D, Small M, Harrison R. et al . Measuring temporal complexity of ventricular fibrillation.  Phys Lett A. 2000;  265 668-675
  • 37 Callaway C W, Sherman L D, Scheatzle M D. et al . Scaling structure of electrocardiogrpahic waveform during prolonged ventricular fibrillation in swine.  Pacing Clin Electrophysiol. 2000;  23 180-191
  • 38 Sherman L D, Callaway C W, Menegazzi J J. Ventricular fibrillation exhibits dynamical properties and self-similarity.  Resuscitation. 2000;  47 163-173
  • 39 Brown C G, Dzwonczyk R, Werman H A. et al . Estimating the duration of ventricular fibrillation.  Ann Emerg Med. 1989;  18 1181-1185
  • 40 Brown C G, Griffith R F, Van Ligten P. et al . Median frequency: a new parameter for predicting defibrillation success rate.  Ann Emerg Med. 1991;  20 787-789
  • 41 Dzwonczyk R, Brown C G, Werman H A. The median frequency of the ECG during ventricular fibrillation: its use in an algorithm for estimating the duration of cardiac arrest.  IEEE Trans Biomed Eng. 1990;  37 640-646
  • 42 Amann A, Mayr G, Strohmenger H U. N(α)-histogram analysis of the ventricular fibrillation ECG-signal as predictor of countershock success.  Chaso, Solitions and Fractals. 2000;  11 1205-1212
  • 43 Amann A, Achleitner U, Antretter H. et al . Analysing ventricular fibrillation ECG-signals and predicting defibrillation success during cardiopulmonary resuscitation employing N(α) histograms.  Resuscitation. 2001;  50 77-85
  • 44 Eftestol T, Sunde K, Ole Aase S. et al . Predicting outcome of defibrillation by spectral characterization and nonparametric classification of ventricular fibrillation in patients with out-of-hospital cardiac arrest.  Circulation. 2000;  102 1523-1529
  • 45 Brown C G, Dzwonczyk R. Signal analysis of the human electrocardiogram during ventricular fibrillation: frequency and amplitude parameters as predictors of successful countershock.  Ann Emerg Med. 1996;  27 184-188
  • 46 Monsieurs K G, De Cauwer H, Wuyts F L. et al . A rule for early outcome classification of out-of-hospital cardiac arrest patients presenting with ventricular fibrillation.  Resuscitation. 1998;  36 37-44
  • 47 Strohmenger H U, Lindner K H, Brown C G. Analysis of the ventricular fibrillation ECG signal amplitude and frequency parameters as predictors of countershock success in humans.  Chest. 1997;  111 584-589
  • 48 Aase S O, Eftestol T, Husoy J H. et al . CPR artifact removal from human ECG using optimal multichannel filtering.  IEEE Trans Biomed Eng. 2000;  47 1440-1449
  • 49 Callaham M, Braun O, Valentine W. et al . Prehospital cardiac arrest treated by urban first-responders: profile of patient response and prediction of outcome by ventricular fibrillation waveform.  Ann Emerg Med. 1993;  22 1664-1677
  • 50 Noc M, Weil M H, Gazmuri R J. et al . Ventricular fibrillation voltage as a monitor of the effectiveness of cardiopulmonary resuscitation.  J Lab Clin Med. 1994;  124 421-426
  • 51 Strohmenger H U, Lindner K H, Prengel A W. et al . Effects of epinephrine and vasopressin on median fibrillation frequency and defibrillation success in a porcine model of cardiopulmonary resuscitation.  Resuscitation. 1996;  31 65-73
  • 52 Strohmenger H U, Lindner K H, Lurie K G. et al . Frequency of ventricular fibrillation as a predictor of defibrillation success during cardiac surgery.  Anesth Analg. 1994;  79 434-438
  • 53 Strohmenger H U, Lindner K H, Keller A. et al . Effects of graded doses of vasopressin on median fibrillation frequency in a porcine model of cardiopulmonary resuscitation: results of a prospective, randomized, controlled trial.  Crit Care Med. 1996;  24 1360-1365
  • 54 Stewart A J, Allen J D, Adgey A A. Frequency analysis of ventricular fibrillation and resuscitation success.  Q J Med. 1992;  85 761-769
  • 55 Martin D R, Brown C G, Dzwonczyk R. Frequency analysis of the human and swine electrocardiogram during ventricular fibrillation.  Resuscitation. 1991;  22 85-91
  • 56 Carlisle E J, Allen J D, Kernohan W G. et al . Fourier analysis of ventricular fibrillation of varied aetiology.  Eur Heart J. 1990;  11 173-181
  • 57 Weaver W D, Cobb L A, Dennis D. et al . Amplitude of ventricular fibrillation waveform and oautcome after cardiac arrest.  Ann Intern Med. 1985;  102 53-55
  • 58 Dalzell G W, Adgey A A. Determinants of successful transthoracic defibrillation and outcome in ventricular fibrillation.  Br Heart J. 1991;  65 311-316
  • 59 Martin G, Cosin J, Such M. et al . Relation between power spectrum time course during ventricular fibrillation and electromechanical dissociation: effects of coronary perfusion and nifedipine.  Eur Heart J. 1986;  7 560-569
  • 60 Schneider T, Martens P R, Paschen H. et al . Multicenter, randomized, controlled trial of 150-J biphasic shocks compared with 200- to 360-J monophasic shocks in the resuscitation of out-of-hospital cardiac arrest victims. Optimized Response to Cardiac Arrest (ORCA) Investigators.  Circulation. 2000;  102 1780-1787

Dr. Anton Amann

Universitätsklinik für Anästhesie und Allgemeine Intensivmedizin, Leopold-Franzens-Universität Innsbruck

Anichstraße 35

Innsbruck

Österreich

Email: anton.amann@uibk.ac.at

    >