Plant Biol (Stuttg) 2005; 7(6): 628-639
DOI: 10.1055/s-2005-865965
Research Paper

Georg Thieme Verlag Stuttgart KG · New York

Crown Allometry and Growing Space Efficiency of Norway Spruce (Picea abies [L.] Karst.) and European Beech (Fagus sylvatica L.) in Pure and Mixed Stands

H. Pretzsch1 , G. Schütze1
  • 1Chair of Forest Yield Science, Faculty of Forest Science and Resource Management, Technical University of Munich, Am Hochanger 13, 85354 Freising-Weihenstephan, Germany
Further Information

Publication History

Received: April 18, 2005

Accepted: July 15, 2005

Publication Date:
02 January 2006 (online)

Abstract

In pure and mixed stands of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) we have analyzed crown allometry and growing space efficiency at the tree level and have scaled this from tree level to stand level production. Allometry is quantified by the ratio A between the relative growth rates of laterally and vertically oriented tree dimensions. Efficiency parameters, EOC for efficiency in space occupation, EEX for efficiency in space exploitation, and EBI for efficiency in biomass investment, were evaluated, based on quantity and quality of growing space and were measured using crown size and competition index. The evaluation reveals why pure stands of spruce are preferred by foresters, even though the natural vegetation would be dominated by beech. Spruce occupies its share of resources intensively by means of tightly packed pillar-like crowns, whereas beech seizes resources extensively by means of a multi-layered, veil-like canopy. With a given relative biomass increment, beech achieves a 57 % higher increment in crown projection area and a 127 % higher increment in height due to its particular capacity of lateral and vertical expansion. Beech trees are approximately 60 % more efficient in space occupation than spruce trees, however, on average, they are about 70 % less efficient in space exploitation. As a vertical fast growing tree, spruce is efficient in space exploitation under constant conditions, but far more susceptible to disturbances and less well equipped to overcome them when compared with beech. Beech is weaker in terms of space exploitation, while being superior in space occupation, where it encircles competitors and fills gaps after disturbances, which is a successful long-term strategy. A mixture of the two species reduces stand level production by 24 % in comparison to a pure spruce stand, however, when considering enhanced stabilization of the whole stand and risk distribution in the long term, the mixed stand may exceed the production level of pure spruce stands. EEX reflects a strong ontogenetic drift and competition effect that should be considered when scaling from tree to stand level production.

References

  • 1 Assmann E.. Waldertragskunde. Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. München, Bonn, Wien; BLV Verlagsgesellschaft (1961): 490
  • 2 Bachmann M.. Indizes zur Erfassung der Konkurrenz von Einzelbäumen. Methodische Untersuchung in Bergmischwäldern.  Forstliche Forschungsberichte München. (1998);  171 261
  • 3 Bertalanffy v. L.. Theoretische Biologie, Bd. II. Bern; Verlag A. Francke AG (1951): 418
  • 4 Biging S. G., Dobbertin M.. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees.  Forest Science. (1992);  38 695-720
  • 5 Bolte A., Rahmann T., Kuhr M., Pogoda P., Murach D., v. Gadow K.. Relationship between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.).  Plant and Soil. (2004);  264 1-11
  • 6 Bortz J., Lienert G. A., Boehnke K.. Verteilungsfreie Methoden in der Biostatistik. Berlin, Heidelberg, New York, London; Springer-Verlag (1990): 939
  • 7 Dhôte J.-F.. Implication of forest diversity for the resistance to strong winds. Scherer-Lorenzen, M., Körner, C., and Schulze, E.-D., eds. Forest Diversity and Function, Ecological Studies 176. Berlin; Springer (2004): 399p
  • 8 Enquist B. J., Niklas K. J.. Invariant scaling relations across tree-dominated communities.  Nature. (2001);  410 655-660
  • 9 Grote R., Schuck J., Block J., Pretzsch H.. Oberirdische holzige Biomasse in Kiefern-/Buchen- und Eichen-/Buchen-Mischbeständen.  Forstwissenschaftliches Centralblatt. (2003);  122 287-301
  • 10 Harper J. L.. Population Biology of Plants. London; Academic Press (1977): 892
  • 11 Kennel R.. Untersuchungen über die Leistung von Fichte und Buche im Rein- und Mischbestand.  Allgemeine Forst- und Jagdzeitung. (1965);  136 149-161 173-189
  • 13 Kölling Ch., Walentowski H., Borchert H.. Die Buche in Mitteleuropa.  AFZ - Der Wald. (2005);  in press
  • 12 Körner Ch.. An introduction to the functional diversity of temporate forest trees. Scherer-Lorenzen, M., Körner, C., and Schulze, E.-D., eds. Forest Diversity and Function, Ecological Studies 176. Berlin; Springer (2005): 13-37
  • 14 Kozlowski J., Konarzewski M.. Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?.  Functional Ecology. (2004);  18 283-289
  • 15 Leuschner C.. Mechanismen der Konkurrenzüberlegenheit der Rotbuche.  Berichte der Reinhold Tüxen-Gesellschaft. (1998);  10 5-18
  • 16 Lüpke B., Spellmann H.. Aspects of stability, growth and natural regeneration in mixed Norway spruce-beech stands as a basis of silvicultural decisions. Olsthoorn, A. F. M., Bartelink, H. H., Gardiner, J. J., Pretzsch, H., Hekhuis. H. J., and Franc, A., eds. Management of Mixed-Species Forest: Silviculture and Economics, IBN Scientific Contributions. (1999): 245-267
  • 17 Matyssek R., Schnyder H., Elstner E.-F., Munch J.-C., Pretzsch H., Sandermann H.. Growth and parasite defence in plants; the balance between resource sequestration and retention.  Plant Biology. (2002);  4 133-136
  • 18 Mayer R.. Kronengröße und Zuwachsleistung der Traubeneiche auf süddeutschen Standorten.  Allgemeine Forst- und Jagdzeitung. (1958);  129 105-114 151-163 191-201
  • 19 McMahon T. A., Kronauer R. E.. Tree structure: deducing the principle of mechanical design.  Journal of Theoretical Biology. (1976);  59 443-466
  • 20 Mielikäinen K.. Koivusekoituksen vaikutus kuusikon rakenteeseeen ja kehitykseen. Effect of an admixture of birch on the structure and development of Norway Spruce Stands.  Communicationes Instituti Forestalis Fenniae. (1985);  133 1-79
  • 21 Niklas K. J.. Plant Allometry. Chicago; University of Chicago Press (1994): 395
  • 22 Petri H.. Versuch einer standortgerechten, waldbaulichen und wirtschaftlichen Standraumregelung von Buchen-Fichten-Mischbeständen.  Mitteilungen aus der Landesforstverwaltung Rheinland-Pfalz. (1966);  13 145
  • 23 Pretzsch H.. Modellierung des Waldwachstums. Berlin, Wien; Blackwell (2001): 341
  • 24 Pretzsch H.. Grundlagen der Waldwachstumsforschung. Berlin, Wien; Blackwell (2002): 414
  • 25 Pretzsch H.. Diversity and productivity in forests. Scherer-Lorenzen, M., Körner, C., and Schulze, E.-D., eds. Forest Diversity and Function, Ecological Studies 176. Berlin; Springer (2004): 41-64
  • 26 Pretzsch H.. Species-specific allometric scaling under self-thinning. Evidence from long-tern plots in forest stands.  Oecologia. (2005 a);  DOI: 10.1007/s00442-005-0126-0
  • 27 Pretzsch H.. Stand density and growth of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.): evidence from long-term experimental plots.  European Journal of Forest Research. (2005 b);  DOI: 10.1007/s10342-005-0068-4
  • 28 Pretzsch H., Kahn M., Grote R.. Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches “Wachstum oder Parasitenabwehr?” im Kranzberger Forst.  Forstwissenschaftliches Centralblatt. (1998);  117 241-257
  • 29 Pretzsch H., Seifert St.. Methoden zur Visualisierung des Waldwachstums.  Forstwissenschaftliches Centralblatt. (2000);  119 100-113
  • 30 Pretzsch H., Biber P.. A re-evaluation of Reineke's rule and Stand Density Index.  Forest Science. (2005);  51 304-320
  • 31 Reitmayer H., Werner H., Fabian P.. A novel system for spectral analysis of solar radiation within a mixed beech-spruce stand.  Plant Biology. (2002);  4 228-233
  • 32 Sterba H., Amateis R. L.. Crown efficiency in a loblolly pine (Pinus taeda) spacing experiment.  Canadian Journal of Forest Research. (1998);  28 1344-1351
  • 33 Stoll P., Weiner J., Muller-Landau H., Müller E., Hara T.. Size symmetry of competition alters biomass-density relationships.  Proceedings of the Royal Society of London, Series B - Biological Sciences. (2002);  269 2191-2195
  • 34 Webster  R., Lorimer C. G.. Comparative growing space efficiency of four tree species in mixed confer-hardwood forests.  Forest Ecology and Management. (2003);  177 361-377
  • 35 Weller D. E.. A reevaluation of the - 3/2 power rule of plant self-thinning.  Ecological Monographs. (1987);  57 23-43
  • 36 West G. B., Brown J. H., Enquist B. J.. A general model for the origin of allometric scaling laws in biology.  Science. (1997);  276 122-126
  • 37 Wiedemann E.. Der gleichaltrige Fichten-Buchen-Mischbestand.  Mitteilungen aus der Forstwirtschaft und Forstwissenschaft. (1942);  13 1-88
  • 38 Wiedemann E.. Der Vergleich der Massenleistung des Mischbestandes mit dem Reinbestand.  Allgemeine Forst- und Jagdzeitung. (1943);  119 123-132
  • 39 Zeide B.. Tolerance and self-tolerance of trees.  Forest Ecology and Management. (1985);  13 149-166
  • 40 Zeide B.. Analysis of the 3/2 power law of self-thinning.  Forest Science. (1987);  33 517-537

H. Pretzsch

Chair of Forest Yield Science
Faculty of Forest Science and Resource Management
Technical University of Munich

Am Hochanger 13

85354 Freising-Weihenstephan

Germany

Email: h.pretzsch@lrz.tum.de

Guest Editor: R. Matyssek

    >