Abstract
Microwave irradiation promotes the conversion of enaminoketones
formed in situ into a variety of heterocycles by reaction with the
appropriate bidentate nucleophile. The advantages of the method
over previous approaches are short reaction times and facile purification
by precipitation of the products in aqueous media. Moreover the
convenient one-pot procedure makes these syntheses particularly
suitable for library production. Organic reactions in aqueous media
have become of great interest as water is not only more environmentally
friendly, but also because organic reactions in water often display
unique reactivity and selectivity.
Key words
bidentate nucleophiles - tandem addition-elimination/cyclodehydration - enaminoketones
- microwave irradiation
References
<A NAME="RM01302SS-1A">1a </A>
Schenone P.
Mosti L.
Menozzi G.
J. Heterocycl. Chem.
1982,
19:
1355
<A NAME="RM01302SS-1B">1b </A>
Dawood KM.
Farag AM.
Kandeel ZE.
J. Chem. Res., Synop.
1999,
88
<A NAME="RM01302SS-2A">2a </A>
Lemke TL.
Sawhney KN.
J. Heterocycl. Chem.
1982,
19:
1335
<A NAME="RM01302SS-2B">2b </A>
Olivera R.
SanMartin R.
Dominguez E.
J.
Org. Chem.
2000,
65:
7010
<A NAME="RM01302SS-2C">2c </A>
Olivera R.
SanMartin R.
Dominguez E.
Tetrahedron
Lett.
2000,
41:
4353
<A NAME="RM01302SS-3A">3a </A>
Chen W.-Y.
Gilman NW.
J.
Heterocycl. Chem.
1983,
20:
663
<A NAME="RM01302SS-3B">3b </A>
Mosti L.
Menozzi G.
Schenone P.
J. Heterocycl.
Chem.
1983,
20:
649
<A NAME="RM01302SS-3C">3c </A>
Menozzi G.
Mosti L.
Schenone P.
J.
Heterocycl. Chem.
1984,
21:
1437
<A NAME="RM01302SS-3D">3d </A>
Bruno O.
Schenone S.
Ranise A.
Bondavalli F.
Filippelli W.
Falcone G.
Motola G.
Mazzeo F.
Farmaco
1999,
54:
95
<A NAME="RM01302SS-4">4 </A>
Jones WD.
Huber EW.
Grisar JM.
Schnettler RA.
J.
Heterocycl. Chem.
1987,
24:
1221
<A NAME="RM01302SS-5A">5a </A>
Menozzi G.
Schenone P.
Mosti L.
J. Heterocycl. Chem.
1983,
20:
645
<A NAME="RM01302SS-5B">5b </A>
Schenone P.
Fossa P.
Menozzi G.
J.
Heterocycl. Chem.
1991,
28:
453
<A NAME="RM01302SS-5C">5c </A>
Olivera R.
SanMartin R.
Dominguez E.
Synlett
2000,
1028
<A NAME="RM01302SS-6">6 </A>
Cohnen E.
Dewald R.
Synthesis
1987,
566
<A NAME="RM01302SS-7A">7a </A>
Mosti L.
Schenone P.
Menozzi G.
J. Heterocycl. Chem.
1985,
22:
1503
<A NAME="RM01302SS-7B">7b </A>
Fossa P.
Boggia R.
Lo Presti E.
Mosti L.
Dorigo P.
Floreani M.
Farmaco
1997,
52:
523
<A NAME="RM01302SS-8">8 </A>
Peet NP.
LeTourneau ME.
Heterocycles
1991,
32:
41
<A NAME="RM01302SS-9">9 </A>
Lidstrom P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
<A NAME="RM01302SS-10">10 </A>
Reaction of phenylhydrazine with pentane-2,4-dione
(29%), 3-oxo-3-phenylpropionic acid ethyl ester (20%),
1-methanesulfonylpropan-2-one (32%), 2-methanesulfonyl-1-phenylethanone
(72%), N ,N -diethyl-3-oxo-3-phenylpropionamide
(37%), and 3-oxo-3-phenylpropionitrile (10%) gave
the yields shown in the parenthesis.
<A NAME="RM01302SS-11">11 </A>
Stolle WAW.
Veurink JM.
Marcelis ATM.
van der Plas HC.
Tetrahedron
1992,
48:
1643
<A NAME="RM01302SS-12">12 </A>
Tonkikh NN.
Strakov AY.
Petrova MV.
Chem. Heterocycl. Compd. (Engl. Transl.)
2000,
36:
212
<A NAME="RM01302SS-13">13 </A>
Demko ZP.
Sharpless KB.
J. Org. Chem.
2001,
66:
7945
<A NAME="RM01302SS-14">14 </A>
An J.
Bagnell L.
Cablewski T.
Strauss CR.
Trainor RW.
J.
Org. Chem.
1997,
62:
2505