Abstract
Microwave irradiation strongly accelerates the regioselective nucleophilic ring opening
of epoxides by pyrimidine nucleobases. In the presence of tetrabutylammonium bromide
(TBAB), various bases were elaborated to determine the proper base in which it can
activate N1 rather than N3 for alkylation. It was shown that MgO not only could serve
as an eligible base, but also enhanced the selectivity and tendency of N1 for alkylation
as compared with N3. The use of microwave irradiation provided dominant regioselective
synthesis of N 1-β-hydroxyalkylpyrimidines in moderate to good yields with a reaction time of less
than 7 minutes.
Key words
microwave - uracil - epoxides - TBAB - magnesium oxide
References
<A NAME="RZ16203SS-1A">1a </A>
Langa F.
de la Cruz P.
de la Hoz A.
Diaz-Ortiz A.
Diez-Barra E.
Contemp. Org. Synth.
1997,
65:
373
<A NAME="RZ16203SS-1B">1b </A>
Vega JA.
Cueto S.
Ramos A.
Vaquero JJ.
Garcia-Navio JL.
Alvarez-Builla J.
Ezquerra J.
Tetrahedron Lett.
1996,
37:
6413
<A NAME="RZ16203SS-1C">1c </A>
Almena I.
Diaz-Ortiz A.
Diez-Barra E.
de la Hoz A.
Loupy A.
Chem. Lett.
1996,
333
<A NAME="RZ16203SS-1D">1d </A>
Carrillo-Munoz JR.
Bouvet D.
Guibe-Jampel E.
Loupy A.
Petit A.
J. Org. Chem.
1996,
61:
7746
<A NAME="RZ16203SS-1E">1e </A>
Herradon B.
Morcuende A.
Valverde S.
Synlett
1995,
61:
455
<A NAME="RZ16203SS-1F">1f </A>
Forfar I.
Cabil do P.
Claramunt RM.
Elguero J.
Chem. Lett.
1994,
2079
<A NAME="RZ16203SS-2A">2a </A>
Khalafi-Nezhad A.
Soltani Rad MN.
Hakimelahi GH.
Helv. Chim. Acta
2003,
86:
2396
<A NAME="RZ16203SS-2B">2b </A>
Khalafi-Nezhad A.
Mokhtari B.
Soltani Rad MN.
Tetrahedron Lett.
2003,
44:
7325
<A NAME="RZ16203SS-2C">2c </A>
Khalafi-Nezhad A.
Alamdari F.
Zekri N.
Tetrahedron
2000,
56:
7503
<A NAME="RZ16203SS-2D">2d </A>
Khalafi-Nezhad A.
Hashemi A.
Iran. J. Chem. Chem. Eng.
2001,
20:
9 ; Chem. Abstr. 2002 , 137 , 232608
<A NAME="RZ16203SS-2E">2e </A>
Khalafi-Nezhad A.
Hashemi A.
J. Chem. Res., Synop.
1999,
720
<A NAME="RZ16203SS-3A">3a </A>
Microwave in Organic Synthesis
Loupy A.
Wiely-VCH;
Weinheim:
2002.
<A NAME="RZ16203SS-3B">3b </A>
Hayes BL.
Microwave Synthesis: Chemistry at the Speed of Light
CEM Publishing;
Mathews, NC:
2002.
<A NAME="RZ16203SS-3C">3c </A>
Varma RS.
Advances in Green Chemistry: Chemical Synthesis Using Microwave Irradiation
Astra Zeneca Research Foundation, Kavitha Printers;
Bangalore, India:
2002.
<A NAME="RZ16203SS-3D">3d </A>
Ahluwalia VK.
Aggarwal R.
Organic Synthesis: Special Techniques
Alpha Science International Ltd.;
Pangbourne / U.K.:
2001.
Chap. 3.
p.90-114
<A NAME="RZ16203SS-3E">3e </A>
Microwave-Enhanced Chemistry. Fundamental, Sample Preparation, and Applications
Kingston HM.
Haswell SJ.
American Chemical Society;
Washington / D.C.:
1997.
<A NAME="RZ16203SS-3F">3f </A>
Lew A.
Krutzik PO.
Hart ME.
Chamberlin AR.
J. Comb. Chem.
2002,
4:
95
<A NAME="RZ16203SS-3G">3g </A>
Larhed M.
Moberg C.
Hallberg A.
Acc. Chem. Res.
2002,
35:
717
<A NAME="RZ16203SS-3H">3h </A>
Wathey B.
Tierney J.
Lidstrom P.
Westman J.
Drug Discovery Today
2002,
7:
373
<A NAME="RZ16203SS-3I">3i </A>
Kuhnert N.
Angew. Chem. Int. Ed.
2002,
41:
1863
<A NAME="RZ16203SS-3J">3j </A>
Lidstorm P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
<A NAME="RZ16203SS-3K">3k </A>
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
<A NAME="RZ16203SS-3L">3l </A>
Varma RS.
Green Chem.
1999,
1:
43
<A NAME="RZ16203SS-3M">3m </A>
Caddick S.
Tetrahedron
1995,
51:
10403
<A NAME="RZ16203SS-4">4 </A>
Declercq E. In Advance in Antiviral Drug Design
Vol.1:
Johnsson NG.
Jai;
Greenwich:
1993.
p.88-164
<A NAME="RZ16203SS-5">5 </A>
Munter T.
Cotrell L.
Stuart H.
Kronberg L.
Watson WP.
Golding BT.
Chem. Res. Toxicol.
2002,
15:
1549
<A NAME="RZ16203SS-6">6 </A>
Rodriguez, H.; Perez, R.; Suarez, M.; Lam, A.; Cabrales, N.; Loupy, A. Fifth International Electronic Conference on Synthetic Organic Chemistry (ESCOC-5) ; http://www.mdpi.net/escoc-5/e0004/e0004.html
<A NAME="RZ16203SS-7A">7a </A>
Kondo K.
Sato T.
Takemoto K.
Chem. Lett.
1973,
967
<A NAME="RZ16203SS-7B">7b </A>
DiMenna WS.
Piantadosi C.
J. Med. Chem.
1978,
21:
1073
<A NAME="RZ16203SS-7C">7c </A>
Martin JC.
Smee DF.
Verheyden JPH.
J. Org. Chem.
1985,
50:
755
<A NAME="RZ16203SS-7D">7d </A>
Biggadike K.
Borthwick AD.
Exall AM.
Kirk BE.
Roberts SM.
Youds P.
J. Chem. Soc., Chem. Commun.
1987,
1083
<A NAME="RZ16203SS-7E">7e </A>
Novikov MS.
Ozerov AA.
Brel AK.
Boreko EI.
Vladyko GV.
Korobchenko LV.
Khim.-Farm. Zh.
1991,
25:
35 ; Chem. Abstr . 1992 , 116 , 128848
<A NAME="RZ16203SS-7F">7f </A>
Brodfuehrer PR.
Howell HG.
Sapino C.
Vemishetti P.
Tetrahedron Lett.
1994,
35:
3243
<A NAME="RZ16203SS-7G">7g </A>
Allart B.
Busson R.
Razenski J.
Van Aerschot A.
Herdewign P.
Tetrahedron
1999,
55:
6527
<A NAME="RZ16203SS-7H">7h </A>
Allart B.
Khan K.
Rosemeyer H.
Schepers G.
Hendrix C.
Rothenbacher K.
Seela F.
Van Aerschot A.
Herdewign P.
Chem. Eur. J.
1999,
5:
2424
<A NAME="RZ16203SS-7I">7i </A>
Guan H.-P.
Ksebuti NB.
Kern EK.
Zemlicka J.
J. Org. Chem.
2000,
65:
5177
<A NAME="RZ16203SS-7J">7j </A>
Pederson DS.
Boesen T.
Eldrup AB.
Kiaer B.
Madsen C.
Henriksen U.
Dahl O.
J. Chem. Soc., Perkin Trans.1
2001,
1656
<A NAME="RZ16203SS-8">8 </A> The phase-transfer catalyst (PTC)-mediated microwave-assisted organic reaction
is well established and fully demonstrated (see Ref.1,5 and all references cited therein).
However, in this reaction, TBAB not only absorbs the microwave irradiation but also
generates in situ heat and increases the temperature higher than its melting point
(100-103 °C). Under these conditions, TBAB creates the homogeneous media whose resemblance
is not far from ionic liquids concept. For monographies on ionic liquid, see:
Wasserscheid P.
Welton T.
Ionic Liquids in Synthesis
Wiley-VCH;
Weinheim:
2002.
<A NAME="RZ16203SS-9">9 </A>
Khalafi-Nezhad A.
Soltani Rad MN.
Khoshnood A.
Synthesis
2003,
2552
<A NAME="RZ16203SS-10">10 </A>
Vogel AI.
Practical Organic Chemistry
Longman, Green and Co.;
London:
1954.
p.161-176