Planta Med 2018; 84(12/13): 874-880
DOI: 10.1055/a-0635-8369
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Review: Endoplasmic Reticulum-Associated Degradation (ERAD)-Dependent Control of (Tri)terpenoid Metabolism in Plants

Marie-Laure Erffelinck
1   Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
2   VIB Center for Plant Systems Biology, Ghent, Belgium
,
Alain Goossens
1   Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
2   VIB Center for Plant Systems Biology, Ghent, Belgium
› Author Affiliations
Further Information

Publication History

received 31 January 2018
revised 17 May 2018

accepted 23 May 2018

Publication Date:
15 June 2018 (online)

Abstract

Plants are sessile organisms. Therefore, they developed the capacity to quickly respond to biotic and abiotic environmental stresses, for instance by producing a broad spectrum of bioactive specialized metabolites. In this defense response, the jasmonate phytohormones can instigate a signaling cascade that leads to the specific elicitation and reprograming of numerous metabolic pathways. Recent research progress has provided several insights into the regulatory networks of many specialized metabolic pathways, mainly at the transcriptional level. Nonetheless, our view on the regulation of defense metabolism remains far from comprehensive. Here, we describe the recent advances obtained with regard to one aspect of the regulation of plant specialized metabolism, namely the posttranslational regulation of enzyme stability. We focus on terpenoid biosynthesis and in particular on the rate-limiting and well-investigated enzyme of the terpenoid precursor pathway, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). There are clear similarities, as well as important mechanistic differences, among the components involved in the posttranslational regulation of terpenoid biosynthesis via HMGR in plants, yeasts, and mammals. Furthermore, in plants, several of these components evolved to respond to specific signaling cues. Indeed, the elements of the plant endoplasmic reticulum-associated degradation (ERAD) and ER stress-associated processes can be induced upon environmental stresses and during specific developmental processes, thereby allowing a unique posttranslational regulation of terpenoid biosynthesis pathways.

 
  • References

  • 1 Croteau R, Kutchan TM, Lewis NG. Natural Products (secondary Metabolites). In: Buchanan B, Gruissem W, Jones R. eds. Biochemistry & molecular Biology of Plants. Rockville: American Society of Plant Physiologists; 2000: 1250-1318
  • 2 Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol 2007; 3: 408-414
  • 3 Kuzuyama T, Seto H. Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 2003; 20: 171-183
  • 4 Sacchettini JC, Poulter CD. Creating isoprenoid diversity. Science 1997; 277: 1788-1789
  • 5 Bouvier F, Rahier A, Camara B. Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 2005; 44: 357-429
  • 6 Tarkowská D, Strnad M. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. Planta 2018; 247: 1051-1066
  • 7 Bohlmann J, Keeling CI. Terpenoid biomaterials. Plant J 2008; 54: 656-669
  • 8 Vranová E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network. Mol Plant 2012; 5: 318-333
  • 9 Netala VR, Ghosh SB, Bobbu P, Anitha D, Tartte V. Triterpenoid saponins: a review on biosynthesis, applications and mechanism of their action. Int J Pharm Pharm Sci 2015; 7: 24-28
  • 10 Moses T, Papadopoulou KK, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 2014; 49: 439-462
  • 11 Chang MCY, Keasling JD. Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2006; 2: 674-681
  • 12 Rohmer M, Grosdemange-Billiard C, Seemann M, Tritsch D. Isoprenoid biosynthesis as a novel target for antibacterial and antiparasitic drugs. Curr Opin Investig Drugs 2004; 5: 154-162
  • 13 Rohdich F, Bacher A, Eisenreich W. Isoprenoid biosynthetic pathways as anti-infective drug targets. Biochem Soc Trans 2005; 33: 785-791
  • 14 Pollier J, Goossens A. Oleanolic acid. Phytochemistry 2012; 77: 10-15
  • 15 Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013; 496: 528-532
  • 16 Ro DK, Paradise EM, Quellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006; 440: 940-943
  • 17 Jennewein S, Croteau R. Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl Microbiol Biotechnol 2001; 57: 13-19
  • 18 van Beilen JB, Poirier Y. Establishment of new crops for the production of natural rubber. Trends Biotechnol 2007; 25: 522-529
  • 19 McCaskill D, Croteau R. Prospects for the bioengineering of isoprenoid biosynthesis. Adv Biochem Eng Biotechnol 1997; 55: 107-146
  • 20 Croteau R. Metabolism of monoterpenes in mint (Mentha) species. Planta Med 1991; 57: S10-S14
  • 21 Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 2011; 66: 212-229
  • 22 Lange BM, Rujan T, Martin W, Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 2000; 97: 13172-13177
  • 23 Carrie C, Murcha MW, Millar AH, Smith SM, Whelan J. Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Mol Biol 2007; 63: 97-108
  • 24 Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco Bright Yellow-2 cells. J Biol Chem 2003; 278: 26666-26676
  • 25 Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 2006; 25: 417-440
  • 26 Leivar P, González VM, Castel S, Trelease RN, López-Iglesias C, Arró M, Boronat A, Campos N, Ferrer A, Fernàndez-Busquets X. Subcellular localization of Arabidopsis 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Plant Physiol 2005; 137: 57-69
  • 27 Merret R, Cirioni JR, Bach TJ, Hemmerlin A. A serine involved in actin-dependent subcellular localization of a stress-induced tobacco BY-2 hydroxymethylglutaryl-CoA reductase isoform. FEBS Lett 2007; 581: 5295-5299
  • 28 Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarcʼh N, Clastre M. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta . Planta 2011; 234: 903-914
  • 29 Eisenreich W, Bacher A, Arigoni D, Rohdich F. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 2004; 61: 1401-1426
  • 30 Zhao L, Chang WC, Xiao Y, Liu HW, Liu P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 2013; 82: 497-530
  • 31 Laule O, Fürholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana . Proc Natl Acad Sci U S A 2003; 100: 6866-6871
  • 32 Osbourn A, Goss RJM, Field RA. The saponins – polar isoprenoids with important and diverse biological activities. Nat Prod Rep 2011; 28: 1261-1268
  • 33 Augustin JM, Kuzina V, Andersen SB, Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 2011; 72: 435-457
  • 34 Thimmappa R, Geisler K, Louveau T, OʼMaille P, Osbourn A. Triterpene biosynthesis in plants. Annu Rev Plant Biol 2014; 65: 225-257
  • 35 Cheeke PR. Actual and potential applications of Yucca Schidigera and Quillaja Saponaria Saponins in human and animal Nutrition. In: Oleszek W, Marston A. eds. Saponins in Food, Feedstuffs and medicinal Plants Proceedings of the phythochemical Society of Europe, vol. 45. Dordrecht: Springer; 2000: 241-254
  • 36 Guo S, Lennart K, Lundgren LN, Rönnberg B, Sundquist BG. Triterpenoid saponins from Quillaja saponaria . Phytochemistry 1998; 48: 175-180
  • 37 Zengín ACA. Potential application of Quillaja saponaria saponins as an antimicrobial soaking agent in leather industry. Journal of Textile & Apparel/Tekstil ve Konfeksiyon 2013; 23: 55-61
  • 38 San Martín R, Briones R. Industrial uses and sustainable supply of Quillaja saponaria (Rosaceae) saponins. Econ Bot 1999; 53: 302-311
  • 39 Smułek W, Zdarta A, Pacholak A, Zgoła-Grześkowiak A, Marczak Ł, Jarzębski M, Kaczorek E. Saponaria officinalis L. extract: surface active properties and impact on environmental bacterial strains. Colloids Surf B Biointerfaces 2017; 150: 209-215
  • 40 Christensen LP. Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2008; 55: 1-99
  • 41 Kim YJ, Zhang D, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015; 33: 717-735
  • 42 Graebin CS, Verli H, Guimarães JA. Glycyrrhizin and glycyrrhetic acid: scaffolds to promising new pharmacologically active compounds. J Braz Chem Soc 2010; 21: 1595-1615
  • 43 Pandey DK, Ayangla NW. Biotechnological aspects of the production of natural sweetener glycyrrhizin from Glycyrrhiza sp. Phytochem Rev 2017; 17: 397-430
  • 44 De Geyter N, Gholami A, Goormachtig S, Goossens A. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 2012; 17: 349-359
  • 45 Pauwels L, Inzé D, Goossens A. Jasmonate-inducible gene: what does it mean?. Trends Plant Sci 2009; 14: 87-91
  • 46 Zhou M, Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 2016; 34: 441-449
  • 47 Goossens J, Mertens J, Goossens A. Role and functioning of bHLH transcription factors in jasmonate signalling. J Exp Bot 2017; 68: 1333-1347
  • 48 Kazan K, Manners JM. MYC2: the master in action. Mol Plant 2013; 6: 686-703
  • 49 Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 2012; 24: 2635-2648
  • 50 Spyropoulou EA, Haring MA, Schuurink RC. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. BMC Genomics 2014; 15: 402
  • 51 Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H, Zeng J, Zhou Q, Wang S, Gu W, Liu M, Ren J, Gu X, Zhang S, Wang Y, Yasukawa K, Bouwmeester HJ, Qi X, Zhang Z, Lucas WJ, Huang S. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 2014; 346: 1084-1088
  • 52 Van Moerkercke A, Steensma P, Schweizer F, Pollier J, Gariboldi I, Payne R, Vanden Bossche R, Miettinen K, Espoz J, Purnama PC, Kellner F, Seppänen-Laakso T, OʼConnor SE, Rischer H, Memelink J, Goossens A. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus . Proc Natl Acad Sci U S A 2015; 112: 8130-8135
  • 53 Mertens J, Pollier J, Vanden Bossche R, Lopez-Vidriero I, Franco-Zorrilla JM, Goossens A. The bHLH transcription factors TSAR1 and TSAR2 regulate triterpene saponin biosynthesis in Medicago truncatula . Plant Physiol 2016; 170: 194-210
  • 54 Mertens J, Van Moerkercke A, Vanden Bossche R, Pollier J, Goossens A. Clade IV a basic helix-loop-helix transcription factors form part of a conserved jasmonate signaling circuit for the regulation of bioactive plant terpenoid biosynthesis. Plant Cell Physiol 2016; 57: 2564-2575
  • 55 Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, Ohyanagi H, Mineta K, Michell CT, Saber N, Kharbatia NM, Rupper RR, Sharp AR, Dally N, Boughton BA, Woo YH, Gao G, Schijlen EG, Guo X, Momin AA, Negrão S, Al-Babili S, Gehring C, Roessner U, Jung C, Murphy K, Arold ST, Gojobori T, van der Linden CG, van Loo EN, Jellen EN, Maughan PJ, Tester M. The genome of Chenopodium quinoa . Nature 2017; 542: 307-312
  • 56 Tamura K, Yoshida K, Hiraoka Y, Sakaguchi D, Chikugo A, Mochida K, Kojoma M, Mitsuda N, Saito K, Muranaka T, Seki H. The basic helix-loop-helix transcription factor GubHLH3 positively regulates soyasaponin biosynthetic genes in Glycyrrhiza uralensis . Plant Cell Physiol 2018; 59: 783-796
  • 57 Hemmerlin A, Harwood JL, Bach TJ. A raison dʼêtre for two distinct pathways in the early steps of plant isoprenoid biosynthesis?. Prog Lipid Res 2012; 51: 95-148
  • 58 Rodríguez-Concepción M. Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 2006; 5: 1-15
  • 59 Friesen JA, Rodwell VW. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol 2004; 5: 248
  • 60 Kumari S, Priya P, Misra G, Yadav G. Structural and biochemical perspectives in plant isoprenoid biosynthesis. Phytochem Rev 2013; 12: 255-291
  • 61 Campos N, Boronat A. Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Cell 1995; 7: 2163-2174
  • 62 Lum PY, Edwards S, Wright R. Molecular, functional and evolutionary characterization of the gene encoding HMG-CoA reductase in the fission yeast, Schizosaccharomyces pombe . Yeast 1996; 12: 1107-1124
  • 63 Hampton R, Dimster-Denk D, Rine J. The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem Sci 1996; 21: 140-145
  • 64 Brown MS, Dana SE, Dietschy JM, Siperstein MD. 3-Hydroxy-3-methylglutaryl coenzyme A reductase. Solubilization and purification of a cold-sensitive microsomal enzyme. J Biol Chem 1973; 248: 4731-4738
  • 65 Li W, Liu W, Wei H, He Q, Chen J, Zhang B, Zhu S. Species-specific expansion and molecular evolution of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene family in plants. PLoS One 2014; 9: e94172
  • 66 Liu W, Zhang Z, Li W, Zhu W, Ren Z, Wang Z, Li L, Jia L, Zhu S, Ma Z. Genome-wide identification and comparative analysis of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene family in Gossypium . Molecules 2018; 23: 193
  • 67 Basson ME, Thorsness M, Finer-Moore J, Stroud RM, Rine J. Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis. Mol Cell Biol 1988; 8: 3797-3808
  • 68 Istvan ES, Palnitkar M, Buchanan SK, Deisenhofer J. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J 2000; 19: 819-830
  • 69 Profant DA, Roberts CJ, Koning AJ, Wright RL. The role of the 3-hydroxy 3-methylglutaryl coenzyme A reductase cytosolic domain in karmellae biogenesis. Mol Biol Cell 1999; 10: 3409-3423
  • 70 Hampton RY, Gardner RG, Rine J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 1996; 7: 2029-2044
  • 71 Hampton RY, Rine J. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol 1994; 125: 299-312
  • 72 Vollack KU, Dittrich B, Ferrer A, Boronat A, Bach TJ. Two radish genes for 3-hydroxy-3-methylglutaryl-coa reductase isozymes complement mevalonate auxotrophy in a yeast mutant and yield membrane-bound active enzyme. J Plant Physiol 1994; 143: 479-487
  • 73 Burg JS, Espenshade PJ. Regulation of HMG-CoA reductase in mammals and yeast. Prog Lipid Res 2011; 50: 403-410
  • 74 Gardner R, Cronin S, Leder B, Rine J, Hampton R. Sequence determinants for regulated degradation of yeast 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 1998; 9: 2611-2626
  • 75 Kumagai H, Chun KT, Simoni RD. Molecular dissection of the role of the membrane domain in the regulated degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem 1995; 270: 19107-19113
  • 76 Sever N, Yang T, Brown MS, Goldstein JL, DeBose-Boyd RA. Accelerated degradation of HMG CoA reductase mediated by binding of Insig-1 to its sterol-sensing domain. Mol Cell 2003; 11: 25-33
  • 77 Theesfeld CL, Pourmand D, Davis T, Garza RM, Hampton RY. The sterol-sensing domain (SSD) directly mediates signal-regulated endoplasmic reticulum-associated degradation (ERAD) of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase isozyme HMG2. J Biol Chem 2011; 286: 26298-26307
  • 78 DeBose-Boyd RA. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 2008; 18: 609-621
  • 79 Tsai YC, Leichner GS, Pearce MMP, Wilson GL, Wojcikiewicz RJH, Roitelman J, Weissman AM. Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system. Mol Biol Cell 2012; 23: 4484-4494
  • 80 Lee JN, Song B, DeBose-Boyd RA, Ye J. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J Biol Chem 2006; 281: 39308-39315
  • 81 Song BL, Sever N, DeBose-Boyd RA. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol Cell 2005; 19: 829-840
  • 82 Sever N, Song BL, Yabe D, Goldstein JL, Brown MS, DeBose-Boyd RA. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J Biol Chem 2003; 278: 52479-52490
  • 83 Hampton RY, Bhakta H. Ubiquitin-mediated regulation of 3-hydroxy-3-methylglutaryl-CoA reductase. Proc Natl Acad Sci U S A 1997; 94: 12944-12948
  • 84 Garza RM, Tran PN, Hampton RY. Geranylgeranyl pyrophosphate is a potent regulator of HRD-dependent 3-hydroxy-3-methylglutaryl-CoA reductase degradation in yeast. J Biol Chem 2009; 284: 35368-35380
  • 85 Gardner RG, Shan H, Matsuda SPT, Hampton RY. An oxysterol-derived positive signal for 3-hydroxy-3-methylglutaryl-CoA reductase degradation in yeast. J Biol Chem 2001; 276: 8681-8694
  • 86 Foresti O, Ruggiano A, Hannibal-Bach HK, Ejsing CS, Carvalho P. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. Elife 2013; 2013: e00953
  • 87 Schumacher MM, Jun DJ, Jo Y, Seemann J, DeBose-Boyd RA. Geranylgeranyl-regulated transport of the prenyltransferase UBIAD1 between membranes of the ER and Golgi. J Lipid Res 2016; 57: 1286-1299
  • 88 Schumacher MM, Jun DJ, Johnson BM, DeBose-Boyd RA. UbiA prenyltransferase domain-containing protein-1 modulates HMG-CoA reductase degradation to coordinate synthesis of sterol and nonsterol isoprenoids. J Biol Chem 2018; 293: 312-323
  • 89 Hemmerlin A, Bach TJ. Effects of mevinolin on cell cycle progression and viability of tobacco BY-2 cells. Plant J 1998; 14: 65-74
  • 90 Kondo K, Uritani I, Oba K. Induction mechanism of 3-hydroxy-3-methylglutaryl-CoA reductase in potato tuber and sweet potato root tissues. Biosci Biotechnol Biochem 2003; 67: 1007-1017
  • 91 Korth KL, Jaggard DAW, Dixon RA. Developmental and light-regulated post-translational control of 3-hydroxy-3-methylglutaryl-CoA reductase levels in potato. Plant J 2000; 23: 507-516
  • 92 Rodríguez-Concepción M, Forés O, Martínez-García JF, González V, Phillips MA, Ferrer A, Boronat A. Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell 2004; 16: 144-156
  • 93 Russell DW, Davidson H. Regulation of cytosolic HMG-CoA reductase activity in pea seedlings: contrasting responses to different hormones, and hormone-product interaction, suggest hormonal modulation of activity. Biochem Biophys Res Commun 1982; 104: 1537-1543
  • 94 Dale S, Arró M, Becerra B, Morrice NG, Boronat A, Hardie DG, Ferrer A. Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase (isoform HMGR1) from Arabidopsis thaliana, and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl-CoA reductase kinase. Eur J Biochem 1995; 233: 506-513
  • 95 Douglas P, Pigaglio E, Ferrer A, Halford NG, Mackintosh C. Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are regulated by reversible phosphorylation and/or Ca2+ ions. Biochem J 1997; 325: 101-109
  • 96 Denbow CJ, Lång S, Cramer CL. The N-terminal domain of tomato 3-hydroxy-3-methylglutaryl-CoA reductases. Sequence, microsomal targeting, and glycosylation. J Biol Chem 1996; 271: 9710-9715
  • 97 Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX. PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 2010; 38: D828-D834
  • 98 Gnad F, Gunawardena J, Mann M. PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res 2011; 39: D253-D260
  • 99 Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ane JM, Coon JJ. Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 2010; 152: 19-28
  • 100 Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX. PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 2008; 36: D1015-D1021
  • 101 Stermer BA, Bianchini GM, Korth KL. Regulation of HMG-CoA reductase activity in plants. J Lipid Res 1994; 35: 1133-1140
  • 102 Pollier J, Moses T, González-Guzmán M, De Geyter N, Lippens S, Vanden Bossche R, Marhavý P, Kremer A, Morreel K, Guérin CJ, Tava A, Oleszek W, Thevelein JM, Campos N, Goormachtig S, Goossens A. The protein quality control system manages plant defence compound synthesis. Nature 2013; 504: 148-152
  • 103 Doblas VG, Amorim-Silva V, Posé D, Rosado A, Esteban A, Arró M, Azevedo H, Bombarely A, Borsani O, Valpuesta V, Ferrer A, Tavares RM, Botella MA. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Arabidopsis . Plant Cell 2013; 25: 728-743
  • 104 Kim SM, Wang Y, Nabavi N, Liu Y, Correia MA. Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame. Drug Metab Rev 2016; 48: 405-433
  • 105 Schnepf E. Gland Cells. In: Robards AW. ed. Dynamic Aspects of Plant Ultrastructure. London: McGraw Hill; 1974: 331-357
  • 106 Fawcett DW. The Cell. Philadelphia: Saunders; 1981: 303-309
  • 107 Chin DJ, Luskey KL, Anderson RGW, Faust JR, Goldstein JL, Brown MS. Appearance of crystalloid endoplasmic reticulum in compactin-resistant Chinese hamster cells with a 500-fold increase in 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci U S A 1982; 79: 1185-1189
  • 108 Anderson RGW, Orci L, Brown MS, Garcia-Segura LM, Goldstein JL. Ultrastructural analysis of crystalloid endoplasmic reticulum in UT-1 cells and its disappearance in response to cholesterol. J Cell Sci 1983; 63: 1-20
  • 109 Orci L, Brown MS, Goldstein JL, Garcia-Segura LM, Anderson RGW. Increase in membrane cholesterol: a possible trigger for degradation of HMG CoA reductase and crystalloid endoplasmic reticulum in UT-1 cells. Cell 1984; 36: 835-845
  • 110 Pathak RK, Luskey KL, Anderson RGW. Biogenesis of the crystalloid endoplasmic reticulum in UT-1 cells: evidence that newly formed endoplasmic reticulum emerges from the nuclear envelope. J Cell Biol 1986; 102: 2158-2168
  • 111 Lum PY, Wright R. Degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe . J Cell Biol 1995; 131: 81-94
  • 112 Parrish ML, Sengstag C, Rine JD, Wright RL. Identification of the sequences in HMG-CoA reductase required for karmellae assembly. Mol Biol Cell 1995; 6: 1535-1547
  • 113 Snapp EL, Hegde RS, Francolini M, Lombardo F, Colombo S, Pedrazzini E, Borgese N, Lippincott-Schwartz J. Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 2003; 163: 257-269
  • 114 Ferrero S, Grados-Torrez RE, Leivar P, Antolín-Llovera M, López-Iglesias C, Cortadellas N, Ferrer JC, Campos N. Proliferation and morphogenesis of the endoplasmic reticulum driven by the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase in plant cells. Plant Physiol 2015; 168: 899-914
  • 115 Walter P, Johnson AE. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 1994; 10: 87-119
  • 116 Rapoport TA. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 2007; 450: 663-669
  • 117 Lütcke H. Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. Eur J Biochem 1995; 228: 531-550
  • 118 Schubert U, Antón LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000; 404: 770-774
  • 119 Olzmann JA, Kopito RR, Christianson JC. The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb Perspect Biol 2013; 5: a013185
  • 120 Liu JX, Howell SH. Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytol 2016; 211: 418-428
  • 121 Caarls L, Pieterse CMJ, Van Wees SCM. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 2015; 6: 170
  • 122 Smith JL, De Moraes CM, Mescher MC. Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 2009; 65: 497-503
  • 123 Farmer EE, Ryan CA. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase-inhibitors. Plant Cell 1992; 4: 129-134
  • 124 Liu Y, Ahn JE, Datta S, Salzman RA, Moon J, Huyghues-Despointes B, Pittendrigh B, Murdock LL, Koiwa H, Zhu-Salzman K. Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Plant Physiol 2005; 139: 1545-1556
  • 125 Verma V, Ravindran P, Kumar PP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol 2016; 16: 86
  • 126 Robert-Seilaniantz A, Grant M, Jones JDG. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 2011; 49: 317-343
  • 127 Bari R, Jones JDG. Role of plant hormones in plant defence responses. Plant Mol Biol 2009; 69: 473-488
  • 128 Moreno AA, Mukhtar MS, Blanco F, Boatwright JL, Moreno I, Jordan MR, Chen Y, Brandizzi F, Dong X, Orellana A, Pajerowska-Mukhtar KM. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS One 2012; 7: e31944
  • 129 Tateda C, Ozaki R, Onodera Y, Takahashi Y, Yamaguchi K, Berberich T, Koizumi N, Kusano T. NtbZIP60, an endoplasmic reticulum-localized transcription factor, plays a role in the defense response against bacterial pathogens in Nicotiana tabacum . J Plant Res 2008; 121: 603-611
  • 130 Wang D, Weaver ND, Kesarwani M, Dong X. Induction of protein secretory pathway is required for systemic acquired resistance. Science 2005; 308: 1036-1040
  • 131 Jia XY, Xu CY, Jing RL, Li RZ, Mao XG, Wang JP, Chang XP. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses. J Exp Bot 2008; 59: 739-751
  • 132 Valente MAS, Faria JA, Soares-Ramos JRL, Reis PAB, Pinheiro GL, Piovesan ND, Morais AT, Menezes CC, Cano MAO, Fietto LG, Loureiro ME, Aragão FJL, Fontes EPB. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot 2009; 60: 533-546
  • 133 Zhang H, Ohyama K, Boudet J, Chen Z, Yang J, Zhang M, Muranaka T, Maurel C, Zhu JK, Gong Z. Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis . Plant Cell 2008; 20: 1879-1898
  • 134 Liu JX, Srivastava R, Che P, Howell SH. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell 2007; 19: 4111-4119
  • 135 Gao HB, Brandizzi F, Benning C, Larkin RM. A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana . Proc Natl Acad Sci U S A 2008; 105: 16398-16403
  • 136 Liu JX, Srivastava R, Che P, Howell SH. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J 2007; 51: 897-909
  • 137 Che P, Bussell JD, Zhou W, Estavillo GM, Pogson BJ, Smith SM. Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis . Sci Signal 2010; 3: ra69
  • 138 Zhou SF, Sun L, Valdés AE, Engström P, Song ZT, Lu SJ, Liu JX. Membrane-associated transcription factor peptidase, Site-2 protease, antagonizes ABA signaling in Arabidopsis. New Phytol 2015; 208: 188-197
  • 139 Chen Y, Brandizzi F. AtIRE1A/AtIRE1B and AGB1 independently control two essential unfolded protein response pathways in Arabidopsis. Plant J 2012; 69: 266-277
  • 140 Srivastava R, Chen Y, Deng Y, Brandizzi F, Howell SH. Elements proximal to and within the transmembrane domain mediate the organelle-to-organelle movement of bZIP28 under ER stress conditions. Plant J 2012; 70: 1033-1042