Klin Monbl Augenheilkd 2018; 235(12): 1352-1359
DOI: 10.1055/a-0774-7987
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Vaskuläre Biomarker der retinalen Gefäßanalyse

Vascular Biomarkers in Retinal Vessel Analysis
Konstantin Kotliar
1   Fachbereich Medizintechnik und Technomathematik, Fachhochschule Aachen, Campus Jülich, Jülich
,
Ines Lanzl
2   Chiemsee Augen Tagesklinik, Prien
3   Augenklinik, Klinikum rechts der Isar, Technische Universität München
› Author Affiliations
Further Information

Publication History

eingereicht 15 October 2018

akzeptiert 23 October 2018

Publication Date:
19 December 2018 (online)

Zusammenfassung

Mit modernen nicht invasiven bildgebenden Verfahren lassen sich anhand der Fundusfotografie bzw. der optischen Verfilmung Aspekte der funktionellen und strukturellen retinalen Gefäßveränderungen objektiv untersuchen. Der Zustand und das Verhalten retinaler Gefäße beeinflussen im prä-, post- und kapillaren Bereich den Blutfluss und strömungsbedingte Stoffwechselverhältnisse passiv und aktiv über den Gefäßdurchmesser. Retinale Gefäße gleichen von Aufbau und Funktion den zerebralen Gefäßen und spiegeln den Zustand der Mikrozirkulation wider. Mithilfe von aus den Gefäßweiten berechneten Biomarkern soll eine Aussage über die Prognose von systemischen vaskulär bedingten Erkrankungen getroffen werden. Die statische retinale Gefäßanalyse befasst sich mit der Untersuchung des Zustandes der prä- und postkapillaren Gefäßdurchmesser der retinalen Mikrozirkulation anhand einer optischen Fundusaufnahme. Bei der dynamischen retinalen Gefäßanalyse wird der Längsschnitt eines retinalen Gefäßes nicht invasiv funktionell und strukturell über einen Zeitraum vor, während und nach einer spezifischen vaskulären Stimulation untersucht. Die genaue Methodologie der Auswertung und die Bezeichnung der Parameter variieren bei unterschiedlichen Ansätzen. Mittels retinaler Gefäßanalyse wurden bislang mehrere klinische Querschnitts- und Interventionsstudien in der Augenheilkunde und anderen Fachgebieten, inkl. Kardiologie, Neurologie, Neurochirurgie, Nephrologie, Gynäkologie, Sportmedizin, Diabetologie, Hypertensiologie usw. durchgeführt. Mit der statischen retinalen Gefäßanalyse steht eine kostengünstige, reproduzierbare, nicht invasive Screeningtechnik zur Verfügung, um eine prognostische Aussage über die Gefäßgesundheit eines individuellen Patienten zu treffen. Die dynamische retinale Gefäßanalyse besitzt ein weiteres diagnostisches Anwendungsspektrum als die statische, da sie das Verhalten retinaler Gefäße zeitkontinuierlich untersucht. Die Evaluation vaskulärer Erkrankungen sowie zerebro- bzw. kardiovaskulärer Morbidität und Mortalität mittels mehrerer methodologischer Modalitäten retinaler Gefäßanalyse mit ihren jeweiligen quantitativen Biomarkern bietet eine zukunftsträchtige diagnostische Perspektive. Die interdisziplinäre klinische Anwendung dieser vaskulären Biomarker gewinnt zunehmend an Bedeutung, sowohl in der Augenheilkunde als auch in anderen Fachgebieten.

Abstract

Modern non-invasive imaging procedures – including fundus photography and optical filming – can be used to investigate objective aspects of changes in the function and structure of retinal vessels. In the pre-, post- and capillary areas, the status and behaviour of retinal vessels passively and actively influence blood flow and flow-related metabolism through changes in vascular diameter. Retinal vessels have the same structure and function as cerebral vessels and reflect the status of the microcirculation. In dynamic retinal vessel analysis, the function and structure of the longitudinal section of retinal vessels are subjected to a non-invasive functional and structural examination over a period before, during and after a specific vascular stimulation. The exact methodology of the evaluation and the designation of the parameters depend on the investigation. Retinal vessel analysis has been employed in several cross-sectional and interventional clinical studies in ophthalmology and other specialities, including cardiology, neurology, neurosurgery, nephrology, gynaecology, sports medicine, diabetology, hypertensiology and others. Static retinal vessel analysis is an inexpensive, reproducible, non-invasive technique, which can be used to make a prognostic statement on the vascular health of an individual patient. Dynamic retinal vessel analysis possesses a broader spectrum of diagnostic applications than the static procedure, as it examines changes in vessel diameter continuously over time. The use of several different methodological modalities for retinal vessel analysis together with their relevant quantitative biomarkers represents a promising approach for the evaluation of vascular diseases and cerebro- or cardiovascular morbidity and mortality. Interdisciplinary clinical application of these vascular biomarkers is becoming increasingly important in ophthalmology and other specialities.

 
  • Literatur

  • 1 Gunn RM. On ophthalmoscopic evidence of general arterial disease. Trans Ophthalmol Soc U K 1898; 18: 356-381
  • 2 Berufsverband der Augenärzte Deutschlands e.V., Deutsche Ophthalmologische Gesellschaft e.V.. Leitlinie Nr. 20. Diabetische Retinopathie. Im Internet: https://www.dog.org/wp-content/uploads/2013/08/Leitlinie-Nr.-20-Diabetische-Retinopathie_.pdf Stand: 10.09.2018
  • 3 Berufsverband der Augenärzte Deutschlands e.V., Deutsche Ophthalmologische Gesellschaft e.V.. Leitlinie Nr. 17. Fundus hypertonicus. Im Internet: https://www.dog.org/wp-content/uploads/2009/09/Leitlinie-Nr.-17-Fundus-hypertonicus.pdf Stand: 10.09.2018
  • 4 Walsh JB, Rosen RB, Berinstein DM. Diseases of the Retina. Chapter 13. Systemic Hypertension and the Eye. In: Tasman W, Jaeger EA. eds. Duaneʼs Foundations of clinical Ophthalmology. Hagerstown: Lippincott Williams & Wilkins; 2007: 1-12
  • 5 Cioffi GA, Granstam E, Alm A. Ocular Circulation. In: Kaufmann PL, Alm A. eds. Adlerʼs Physiology of the Eye. St. Louis, London: Mosby; 2003: 747-784
  • 6 Kador PF. Pathology of the Eye. Chapter 18. Ocular Pathology of Diabetes mellitus. In: Tasman W, Jaeger EA. eds. Duaneʼs Foundations of clinical Ophthalmology. Hagerstown: Lippincott Williams & Wilkins; 2007: 1-37
  • 7 van den Born BJ, Hulsman CA, Hoekstra JB. et al.. Value of routine funduscopy in patients with hypertension: systematic review. BMJ 2005; 331: 73
  • 8 Dimmitt SB, West JN, Eames SM. et al.. Usefulness of ophthalmoscopy in mild to moderate hypertension. Lancet 1989; 1: 1103-1106
  • 9 Plange N, Kaup M, Remky A. et al.. Prolonged retinal arteriovenous passage time is correlated to ocular perfusion pressure in normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol 2008; 246: 1147-1152
  • 10 Sines DT, Kagemann L, Siesky B. et al.. Dye dependent differences in arteriovenous passage times: a comparison of indocyanine green and fluorescein sodium dye analysis. Ophthalmic Surg Lasers Imaging 2008; 39: 203-208
  • 11 Cheung CY, Li J, Yuan N. et al.. Quantitative retinal microvasculature in children using swept-source optical coherence tomography: the Hong Kong Children Eye Study. Br J Ophthalmol 2018; DOI: 10.1136/bjophthalmol-2018-312413.
  • 12 Mansoori T, Sivaswamy J, Gamalapati JS. et al.. Radial peripapillary capillary density measurement using optical coherence tomography angiography in early glaucoma. J Glaucoma 2017; 26: 438-443
  • 13 Gallo A, Mattina A, Rosenbaum D. et al.. Retinal arteriolar remodeling evaluated with adaptive optics camera: relationship with blood pressure levels. Ann Cardiol Angeiol (Paris) 2016; 65: 203-207
  • 14 Rosenbaum D, Mattina A, Koch E. et al.. Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics. J Hypertens 2016; 34: 1115-1122
  • 15 Poplin R, Varadarajan AV, Blumer K. et al.. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2018; 2: 158-164
  • 16 Varadarajan AV, Poplin R, Blumer K. et al.. Deep learning for predicting refractive error from retinal fundus images. Invest Ophthalmol Vis Sci 2018; 59: 2861-2868
  • 17 Vilser W, Gräser T, Leisner H. et al.. [Clinical interpretation of retinal circulatory measurements. III. Blood flow velocity and vessel diameter in normal persons and in patients with venous occlusive diseases]. Ophthalmologica 1986; 193: 97-107
  • 18 Vilser W, Klein S, Wulff P. et al.. [Automated measurement of retinal vascular diameter]. Fortschr Ophthalmol 1991; 88: 482-486
  • 19 Hubbard LD, Brothers RJ, King WN. et al.. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. Ophthalmology 1999; 106: 2269-2280
  • 20 Ikram MK, Ong YT, Cheung CY. et al.. Retinal vascular caliber measurements: clinical significance, current knowledge and future perspectives. Ophthalmologica 2013; 229: 125-136
  • 21 Wang JJ, Liew G, Klein R. et al.. Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older populations. Eur Heart J 2007; 28: 1984-1992
  • 22 Wang JJ, Taylor B, Wong TY. et al.. Retinal vessel diameters and obesity: a population-based study in older persons. Obesity (Silver Spring) 2006; 14: 206-214
  • 23 Witt N, Wong TY, Hughes AD. et al.. Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 2006; 47: 975-981
  • 24 Wong TY, Klein R, Couper DJ. et al.. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. Lancet 2001; 358: 1134-1140
  • 25 Tedeschi-Reiner E, Strozzi M, Skoric B. et al.. Relation of atherosclerotic changes in retinal arteries to the extent of coronary artery disease. Am J Cardiol 2005; 96: 1107-1109
  • 26 Kwa VI. Our eyes: windows to our souls or crystal balls?. Lancet Neurol 2006; 5: 108-110
  • 27 Deiseroth A, Marcin T, Berger C. et al.. Retinal vessel diameters and physical activity in patients with mild to moderate rheumatic disease without cardiovascular comorbidities. Front Physiol 2018; 9: 176
  • 28 Hanssen H, Nickel T, Drexel V. et al.. Exercise-induced alterations of retinal vessel diameters and cardiovascular risk reduction in obesity. Atherosclerosis 2011; 216: 433-439
  • 29 Vilser W, Nagel E, Lanzl I. Retinal Vessel Analysis – new possibilities. Biomed Tech (Berl) 2002; 47 (Suppl. 01) S682-S685
  • 30 Vilser W, Riemer T, Münch K. et al.. Automatic online measurement of retinal vessel diameters. Invest Ophthalmol Vis Sci 1996; 4: 226
  • 31 Vilser W, Riemer T, Bräuer-Burchardt C. et al.. Retinal Vessel Analyzer (RVA) a new measuring system for examination of local and temporal vessel behavior. Invest Ophthalmol Vis Sci 1997; 4: 1050
  • 32 Vilser W. Möglichkeiten und Grenzen der retinalen Durchblutungsdiagnostik auf der Basis von Indikatortechnik und Längenmessungen: theoretische und experimentelle Untersuchungen zu einem ophthalmologischen Arbeitsplatz für die Diagnostik retinaler Durchblutungsstörungen [postdoctoral thesis]. Ilmenau: Technische Universität Ilmenau; 1993
  • 33 Garhofer G, Bek T, Boehm AG. et al.. Use of the retinal vessel analyzer in ocular blood flow research. Acta Ophthalmol 2010; 88: 717-722
  • 34 Riva CE, Cranstoun SD, Petrig BL. Effect of decreased ocular perfusion pressure on blood flow and flicker-induced flow response in the cat optic nerve head. Microvasc Res 1996; 52: 258-269
  • 35 Kiryu J, Asrani S, Shahidi M. et al.. Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker. Invest Ophthalmol Vis Sci 1995; 36: 1240-1246
  • 36 Kondo M, Wang L, Bill A. The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats. Acta Ophthalmol 1997; 75: 232-235
  • 37 Lanzl IM, Witta B, Kotliar K. et al.. [Retinal vessel reaction to 100 % O2-breathing–functional imaging using the retinal vessel analyzer with 10 volunteers]. Klin Monatsbl Augenheilkd 2000; 217: 231-235
  • 38 Blum M, Bachmann K, Wintzer D. et al.. Non-invasive measurement of the Bayliss effect in retinal autoregulation. Graefes Arch Clin Exp Ophthalmol 1999; 237: 296-300
  • 39 Nagel E, Vilser W, Lanzl I. Functional analysis of retinal vessel diameter reaction to artificially raised intraocular pressure in glaucoma patients with and without dorzolamide therapy. Vasa 2002; 31: 230-234
  • 40 Nagel E, Vilser W, Lanzl I. Dorzolamide influences the autoregulation of major retinal vessels caused by artificial intraocular pressure elevation in patients with POAG: a clinical study. Curr Eye Res 2005; 30: 129-137
  • 41 Polak K, Schmetterer L, Riva CE. Influence of flicker frequency on flicker-induced changes of retinal vessel diameter. Invest Ophthalmol Vis Sci 2002; 43: 2721-2726
  • 42 Kotliar KE, Vilser W, Nagel E. et al.. Retinal vessel reaction in response to chromatic flickering light. Graefes Arch Clin Exp Ophthalmol 2004; 242: 377-392
  • 43 Garhofer G, Zawinka C, Resch H. et al.. Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. Br J Ophthalmol 2004; 88: 887-891
  • 44 Garhofer G, Zawinka C, Resch H. et al.. Response of retinal vessel diameters to flicker stimulation in patients with early open angle glaucoma. J Glaucoma 2004; 13: 340-344
  • 45 Nägele MP, Barthelmes J, Ludovici V. et al.. Retinal microvascular dysfunction in heart failure. Eur Heart J 2018; 39: 47-56
  • 46 Bruckmann A, Seeliger C, Lehmann T. et al.. Altered retinal flicker response indicates microvascular dysfunction in women with preeclampsia. Hypertension 2015; 66: 900-905
  • 47 Kotliar K, Hauser C, Ortner M. et al.. Altered neurovascular coupling as measured by optical imaging: a biomarker for Alzheimerʼs disease. Sci Rep 2017; 7: 12906
  • 48 Heitmar R, Summers RJ. The time course of changes in retinal vessel diameter in response to differing durations of flicker light provocation. Invest Ophthalmol Vis Sci 2015; 56: 7581-7588
  • 49 Riva CE, Falsini B, Logean E. Flicker-evoked responses of human optic nerve head blood flow: luminance versus chromatic modulation. Invest Ophthalmol Vis Sci 2001; 42: 756-762
  • 50 Kotliar KE, Vilser W, Schmidt-Trucksäss A. et al.. [Temporal oscillations of retinal vessel diameter in healthy volunteers of different age]. Ophthalmologe 2009; 106: 609-618
  • 51 Rieger S, Klee S, Baumgarten D. Experimental characterization and correlation of Mayer waves in retinal vessel diameter and arterial blood pressure. Front Physiol 2018; 9: 892
  • 52 Bek T, Jeppesen P, Kanters JK. Spontaneous high-frequency diameter oscillations of larger retinal arterioles are reduced in type 2 diabetes mellitus. Invest Ophthalmol Vis Sci 2013; 54: 636-640
  • 53 Kochkorov A, Gugleta K, Zawinka C. et al.. Short-term retinal vessel diameter variability in relation to the history of cold extremities. Invest Ophthalmol Vis Sci 2006; 47: 4026-4033
  • 54 Kotliar K, Nagel E, Vilser W. et al.. Microstructural alterations of retinal arterial blood column along the vessel axis in systemic hypertension. Invest Ophthalmol Vis Sci 2010; 51: 2165-2172
  • 55 Kotliar KE. Funktionelle in-vivo Erfassung und biofluidmechanische Analyse altersbedingter und pathologischer mikrostruktureller Veränderungen retinaler Gefäße [Dissertation]. München: Fakultät für Maschinenwesen der Technischen Universität München; 2008: 156
  • 56 Kotliar KE, Nagel E, Vilser W. et al.. Functional in vivo assessment of retinal artery microirregularities in glaucoma. Acta Ophthalmol 2008; 86: 424-433
  • 57 Gugleta K, Kochkorov A, Katamay R. et al.. On pulse-wave propagation in the ocular circulation. Invest Ophthalmol Vis Sci 2006; 47: 4019-4025
  • 58 Kotliar KE, Baumann M, Vilser W. et al.. Pulse wave velocity in retinal arteries of healthy volunteers. Br J Ophthalmol 2011; 95: 675-679
  • 59 Kotliar K, Hanssen H, Eberhardt K. et al.. Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects. Microcirculation 2013; 20: 405-415
  • 60 Kotliar KE, Lanzl IM, Hanssen H. et al.. Does increased blood pressure rather than aging influence retinal pulse wave velocity?. Invest Ophthalmol Vis Sci 2012; 53: 2119-2126
  • 61 Euvrard G, Genevois O, Rivals I. et al.. A semi-automated computer tool for the analysis of retinal vessel diameter dynamics. Comput Biol Med 2013; 43: 513-523
  • 62 Waldmann NP, Kochkorov A, Polunina A. et al.. The prognostic value of retinal vessel analysis in primary open-angle glaucoma. Acta Ophthalmol 2016; 94: e474-e480
  • 63 Lanzl IM, Seidova SF, Maier M. et al.. Dynamic retinal vessel response to flicker in age-related macular degeneration patients before and after vascular endothelial growth factor inhibitor injection. Acta Ophthalmol 2011; 89: 472-479
  • 64 Albanna W, Conzen C, Weiss M. et al.. Retinal vessel analysis (RVA) in the context of subarachnoid hemorrhage – a proof of concept study. PLoS One 2016; 11: e0158781
  • 65 Conzen C, Albanna W, Weiss M. et al.. Vasoconstriction and impairment of neurovascular coupling after subarachnoid hemorrhage: a descriptive analysis of retinal changes. Transl Stroke Res 2017; 9: 284-293
  • 66 Schmaderer C, Tholen S, Hasenau AL. et al.. Rationale and study design of the prospective, longitudinal, observational cohort study “rISk strAtification in end-stage renal disease” (ISAR) study. BMC Nephrol 2016; 17: 161
  • 67 Nguyen TT, Kawasaki R, Wang JJ. et al.. Flicker light-induced retinal vasodilation in diabetes and diabetic retinopathy. Diabetes Care 2009; 32: 2075-2080
  • 68 Mandecka A, Dawczynski J, Vilser W. et al.. Abnormal retinal autoregulation is detected by provoked stimulation with flicker light in well-controlled patients with type 1 diabetes without retinopathy. Diabetes Res Clin Pract 2009; 86: 51-55
  • 69 Mandecka A, Dawczynski J, Blum M. et al.. Influence of flickering light on the retinal vessels in diabetic patients. Diabetes Care 2007; 30: 3048-3052
  • 70 Murgan I, Beyer S, Kotliar KE. et al.. Arterial and retinal vascular changes in hypertensive and prehypertensive adolescents. Am J Hypertens 2013; 26: 400-408
  • 71 Araujo T, Mendonca AM, Campilho A. Parametric model fitting-based approach for retinal blood vessel caliber estimation in eye fundus images. PLoS One 2018; 13: e0194702
  • 72 Huang F, Dashtbozorg B, Tan T. et al.. Retinal artery/vein classification using genetic-search feature selection. Comput Methods Programs Biomed 2018; 161: 197-207
  • 73 Li LJ, Liao J, Fan Q. et al.. Familial correlation of retinal vascular caliber in Singapore Chinese. Invest Ophthalmol Vis Sci 2013; 54: 5638-5642
  • 74 Chandler CS, Gangaputra S, Hubbard LD. et al.. Suboptimal image focus broadens retinal vessel caliber measurement. Invest Ophthalmol Vis Sci 2011; 52: 8558-8561
  • 75 Li LJ, Kramer M, Tapp RJ. et al.. Gestational diabetes mellitus and retinal microvasculature. BMC Ophthalmol 2017; 17: 4
  • 76 Yip W, Tham YC, Hsu W. et al.. Comparison of common retinal vessel caliber measurement software and a conversion algorithm. Transl Vis Sci Technol 2016; 5: 11
  • 77 Heitmar R, Kalitzeos AA, Panesar V. Comparison of two formulas used to calculate summarized retinal vessel calibers. Optom Vis Sci 2015; 92: 1085-1091
  • 78 Knudtson MD, Lee KE, Hubbard LD. et al.. Revised formulas for summarizing retinal vessel diameters. Curr Eye Res 2003; 27: 143-149
  • 79 Fathi A, Naghsh-Nilchi AR, Mohammadi FA. Automatic vessel network features quantification using local vessel pattern operator. Comput Biol Med 2013; 43: 587-593
  • 80 Nagel E, Vilser W, Lanzl I. Age, blood pressure, and vessel diameter as factors influencing the arterial retinal flicker response. Invest Ophthalmol Vis Sci 2004; 45: 1486-1492
  • 81 Kneser M, Kohlmann T, Pokorny J. et al.. Age related decline of microvascular regulation measured in healthy individuals by retinal dynamic vessel analysis. Med Sci Monit 2009; 15: CR436-CR441
  • 82 Sörensen BM, Houben AJ, Berendschot TT. et al.. Prediabetes and type 2 diabetes are associated with generalized microvascular dysfunction: the Maastricht Study. Circulation 2016; 134: 1339-1352
  • 83 Kotliar KE, Lanzl IM. Integrated assessment of temporal, structural and spatial parameters of dynamic retinal vessel behaviour in open-angle glaucoma. Proceedings of German Ophthalmological Society (DOG); 2018: S28-S29 (Fr0806)