Planta Med 2019; 85(11/12): 856-868
DOI: 10.1055/a-0923-8215
Biological and Pharmacological Activity
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Plant Latex, from Ecological Interests to Bioactive Chemical Resources[*]

Luis Francisco Salomé Abarca
1   Institute of Biology, Leiden University, Leiden, The Netherlands
,
Peter G. L. Klinkhamer
1   Institute of Biology, Leiden University, Leiden, The Netherlands
,
Young Hae Choi
1   Institute of Biology, Leiden University, Leiden, The Netherlands
2   College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
› Author Affiliations
Further Information

Publication History

received 28 February 2019
revised 15 May 2019

accepted 16 May 2019

Publication Date:
28 May 2019 (online)

Abstract

Historically, latex-bearing plants have been regarded as important medicinal resources in many countries due to their characteristic latex ingredients. They have also often been endowed with a social or cultural significance in religious or cult rituals or for hunting. Initial chemical studies focused on the protein or peptide content but recently the interest extended to smaller molecules. Latex has been found to contain a broad range of specialized metabolites such as terpenoids, cardenolides, alkaloids, and phenolics, which are partly responsible for their antibacterial, antifungal, anthelmintic, cytotoxic, and insect-repellent activities. The diversity in biology and chemistry of latexes is supposedly associated to their ecological roles in interactions with exogenous factors. Latexes contain unique compounds that are different to those found in their bearing plants. Exploring the feasibility of plant latex as a new type of bioactive chemical resource, this review paper covers the chemical characterization of plant latexes, extending this to various other plant exudates. Also, the factors influencing this chemical differentiation and the production, transportation, and chemistry of the latex exudates are described, based on ecological and biochemical mechanisms. We also proposed a latex coagulation model involving 4 general conserved steps. Therefore, the inherent defensive origin of latexes is recognized as their most valuable character and encourages one to pay attention to these materials as alternative sources to discover metabolites with insecticidal or antimicrobial activity.

* Dedicated to Professor Dr. Cosimo Pizza 70th birthday in recognition of his outstanding contribution to natural product research.


 
  • References

  • 1 Coppen JJ. Gums, Resins and Latexes of Plant Origin. Rome: Food and Agriculture Organization of the United Nations; 1995: IX-X
  • 2 Dell B, McComb AJ. Plant resins – their formation, secretion and possible functions. Adv Bot Res 1977; 6: 277-316
  • 3 Agrawal AA, Lajeunesse MJ, Fishbein M. Evolution of latex and its constituent defensive chemistry in milkweeds (Asclepias): a phylogenetic test of plant defense escalation. Entomol Exp Appl 2008; 128: 126-138
  • 4 Agrawal AA, Konno K. Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 2009; 40: 311-331
  • 5 Konno K. Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 2011; 72: 1510-1530
  • 6 Huber M, Triebwasser-Freese D, Reichelt M, Heiling S, Paetz C, Bartram S, Schneider B, Gershenzon J, Erb M. Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.). Phytochemistry 2015; 115: 89-98
  • 7 Ramos MV, Grangeiro TB, Freire EA, Sales MP, Souza DP, Araújo ES, Freitas CDT. The defensive role of latex in plants: detrimental effects on insects. Arthropod Plant Interact 2010; 4: 57-67
  • 8 Langenheim JH. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany. Portland: Cambridge; 2003: 49-50
  • 9 Termentzi A, Fokialakis N, Skaltsounis AL. Natural resins and bioactive natural products thereof as potential anitimicrobial agents. Curr Pharm Des 2011; 17: 1267-1290
  • 10 Yang Z, Rogers LM, Song Y, Guo W, Kolattukudy PE. Homoserine and asparagine are host signals that trigger in planta expression of a pathogenesis gene in Nectria haematococca . Proc Natl Acad Sci U S A 2005; 102: 4197-4202
  • 11 Kusari S, Zühlke S, Spiteller M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 2009; 72: 2-7
  • 12 Choudhary PD, Pawar HA. Recently investigated natural gums and mucilages as pharmaceutical excipients: an overview. J Pharm 2014; 2014: 1-9
  • 13 Hirst EL, Jones JKW. The Gums and Mucilages of Plants. In: Åberg B, Albaum HG, Arnold A, Badenhuizen NP, Bourne EJ, Dangschat G, Fåhraeus G, Fischer H, Foster AB, Goerdeler J, Gottschalk A, Hassid WZ, Haurowitz F, Helder RJ, Henglein FA, Hirst EL, Jones JKN, Jucker E, Kerstan G, Lovern JA, EV Miller. Neumüller G, Preston RD, Rånby BG, Shafizadeh F, Stacey M, Stoll A, Veibel S, Vollmert B, Wagner A, Wanner H, Weber H, Whelan WJ, Wolf J, Wolfrom ML, Gordon-Young E. eds. Aufbau · Speicherung · Mobilisierung und Umbildung der Kohlenhydrate/Formation · storage · mobilization and transformation of carbohydrates. Handbuch der Pflanzenphysiologie/Encyclopedia of Plant Physiology. Berlin, Heidelberg: Springer; 1958: 500-504
  • 14 Sun Y, Tan DY, Baskin CC, Baskin JM. Role of mucilage in seed dispersal and germination of the annual ephemeral Alyssum minus (Brassicaceae). Aust J Bot 2012; 60: 439-449
  • 15 Dhifi W, Bellili S, Jazi S, Bahloul N, Mnif W. Essential oilsʼ chemical characterization and investigation of some biological activities: a critical review. Medicines 2016; 3: 1-16
  • 16 Vainstein A, Lewinsohn E, Pichersky E, Weiss D. Floral fragrance. New inroads into an old commodity. Plant Physiol 2001; 27: 1383-1389
  • 17 Pophof B, Stange G, Abrell L. Volatile organic signals in a plant-herbivore system: electrophysiological responses in olfactory sensilla of the moth Cactoblastis cactorum . Chem Senses 2005; 30: 51-68
  • 18 Zhang B, Tolstikov V, Turnbull C, Hicks LM, Fiehn O. Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad Sci U S A 2010; 107: 13532-13537
  • 19 Gaupels F, Ghirardo A. The extrafascicular phloem is made for fighting. Front Plant Sci 2013; 4: 187
  • 20 Turgeon R, Oparka K. The secret phloem of pumpkins. Proc Natl Acad Sci U S A 2010; 107: 13201-13202
  • 21 Kehr J. Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. J Exp Bot 2006; 57: 767-774
  • 22 Hunter JR. Reconsidering the functions of latex. Trees 1994; 9: 1-5
  • 23 Polhamus LG. Rubber: Botany, Production, and Utilization. New York: Interscience; 1962: 191-192
  • 24 Metcalfe CR. Distribution of latex in the plant kingdom. Econ Bot 1967; 21: 115-125
  • 25 Esau K. Plant Anatomy. 2nd ed.. New York: Wiley; 1965: 484-487
  • 26 Webster CC, Baulkwill WJ. Rubber. New York: Longman Scientific & Technical; 1989: 84
  • 27 Cai X, Li W, Yin L. Ultrastructure and cytochemical localization of acid phosphatase of laticifers in Euphorbia kansui Liou. Protoplasma 2009; 238: 3-10
  • 28 Pandey BP. Plant Anatomy. 6th ed. New Delhi: S. Chand and Company; 2001: 57-58
  • 29 Taira T, Ohdomar A, Nakama N, Shimoji M, Ishihara M. Characterization and antifungal activity of Gazyumaru (Ficusmicrocarpa) latex chitinases: both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength. Biosci Biotechnol Biochem 2005; 69: 811-818
  • 30 Karban R, Baldwin TT. Induced Responses to Herbivory. Chicago: University of Chicago Press; 1997: 3-4
  • 31 Bauer G, Friedrich C, Gillig C, Vollrath F, Speck T, Holland C. Investigating the rheological properties of native plant latex. J R Soc Interface 2013; 11: 20130847
  • 32 Agrawal AA. Natural selection on common milkweed (Asclepias syriaca) by a community of specialized insect herbivores. Evol Ecol Res 2005; 7: 651-667
  • 33 Hagel JM, Yeung EC, Facchini PJ. Got milk? The secret life of laticifers. Trends Plant Sci 2008; 13: 631-639
  • 34 Fahn A. Plant Anatomy. 3rd ed.. Oxford: Pergamon Press; 1982: 142
  • 35 Mahlberg PG. Laticifers: an historic perspective. Bot Rev 1993; 59: 1-23
  • 36 Pickard WF. Laticifers and secretory ducts: two other tube systems in plants. New Phytol 2008; 177: 877-888
  • 37 Sacchetti G, Ballero M, Serafini M, Romagnoli C, Bruni A, Poli F. Laticifer tissue distribution and alkaloid location in Vincasardoa (Stearn) Pign. (Apocynaceae), an endemic plant of Sardinia (Italy). Phyton 1999; 39: 265-275
  • 38 Bouteau F, Dellis O, Bousquet U, Rona JP. Evidence of multiple sugar uptake across the plasma membrane of laticifer protoplasts from Hevea . Bioelectrochem Bioenerg 1999; 48: 135-139
  • 39 Cook SA, Sekhar BC. Fractions from Hevea brasiliensis latex centrifuged at 59, 000 g. J Rubb Res Inst Malaya 1955; 14: 163-167
  • 40 dʼAuzac J, Crétin H, Marin B, Lioret C. A plant vacuolar system: the lutoids from Hevea brasiliensis latex. Physiol Vég 1982; 20: 311-331
  • 41 Hébant C. Ontogénie des laticifères du système primaire de IʼHevea brasiliensis: une étudeultrastructurale et cytochimique. Can J Bot 1981; 59: 974-985
  • 42 Pujarniscle S. Caractèrelysosomal des lutoïdes du latex dʼHeuea brasiliensis . Physiol Vég 1968; 6: 27-46
  • 43 Dupont J, Moreau F, Lance C, Jacob J. Phospholipid composition of the membrane of lutoids from Hevea brasiliensis latex. Phytochemistry 1976; 15: 1215-1217
  • 44 Frey-Wyssling A. Microscopic investigations on the occurrence ofresins in Hevea latex. Arch Rubber Cult 1929; 13: 392-412
  • 45 Sánchez-Ferrer A, Rodríguez-López JN, Garcıía-Cánovas F, García-Carmona F. Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1995; 1247: 1-11
  • 46 Wahler D, Schulze-Gronover C, Richter C, Foucu F, Twyman RM, Moerschbacher BM, Fischer R, Muth J, Prüfer D. Polyphenoloxidase silencing affects latex coagulation in Taraxacum species. Plant Physiol 2009; 151: 334-346
  • 47 Van Beilen JB, Poirier Y. Establishment of new crops for the production of natural rubber. Trends Biotechnol 2007; 25: 522-529
  • 48 Nor HM, Ebdon JR. Telechelic liquid natural rubber: a review. Prog Polym Sci 1998; 23: 143-177
  • 49 Wititsuwannakul D, Rattanapittayaporn A, Wititsuwannakul R. Rubber biosynthesis by a Hevea latex bottom-fraction membrane. J Appl Polym Sci 2003; 87: 90-96
  • 50 Bushman BS, Scholte AA, Cornish K, Scott DJ, Brichta JL, Vederas JC, Ochoa O, Michelmore RW, Shintani DK, Knapp SJ. Identification and comparison of natural rubber from two Lactuca species. Phytochemistry 2006; 67: 2590-2596
  • 51 Mooibroek H, Cornish K. Alternative sources of natural rubber. Appl Microbiol Biotechnol 2000; 53: 355-365
  • 52 Pintus F, Medda R, Rinaldi AC, Spanò D, Floris G. Euphorbia latex biochemistry: complex interactions in a complex environment. Plant Biosyst 2010; 144: 381-391
  • 53 Usha-Rani P, Jyothsna Y. Biochemical and enzymatic changes in rice as a mechanism of defense. Acta Physiol Plant 2010; 32: 695-701
  • 54 Gulsen O, Eickhoff T, Heng-Moss T, Shearman R, Baxendale F, Sarath G, Lee D. Characterization of peroxidase changes in resistant and susceptible warm season turf grasses challenged by Blissus occiduus . Arthropod Plant Interact 2010; 4: 45-55
  • 55 Gidrol X, Chrestin H, Tan HL, Kush A. Hevein, a lectin-like protein from Hevea brasiliensis (Rubber Tree) is involved in the coagulation of latex. J Biol Chem 1994; 269: 9278-9283
  • 56 Wititsuwannakul R, Pasitkul P, Jewtragoon P, Wititsuwannakul D. Hevea latex lectin binding protein in C-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation. Phytochemistry 2008; 69: 656-662
  • 57 Wang Y, Yang L, Chen X, Ye T, Zhong B, Liu R, Wu Y, Chan Z. Major latex protein-like protein 43 (MLP43) functions as a positive regulator during abscisic acid responses and confers drought tolerance in Arabidopsis thaliana . J Exp Bot 2016; 67: 421-434
  • 58 Zielińska S, Jezierska-Domaradzka A, Wójciak-Kosior M, Sowa I, Junka A, Matkowski AM. Greater celandineʼs ups and downs-21 centuries of medicinal uses of Chelidonium majus from the viewpoint of todayʼs pharmacology. Front Pharmacol 2018; 9: 299
  • 59 Decker G, Wanner G, Zenk MH, Lottspeich F. Characterization of proteins in latex of the opium poppy (Papaver somniferum) using two-dimensional gel electrophoresis and microsequencing. Electrophoresis 2000; 21: 3500-3516
  • 60 Cho WK, Jo Y, Chu H, Park SH, Kim KH. Integration of latex protein sequence data provides comprehensive functional overview of latex proteins. Mol Biol Rep 2014; 41: 1469-1481
  • 61 Nawrot R. Defense-related proteins from Chelidonium majus L. as important components of its latex. Curr Protein Pept Sci 2017; 18: 864-880
  • 62 Gulsen O, Eickhoff T, Heng-Moss T, Shearman R, Baxendale F, Sarath G, Lee D. Characterization of peroxidase changes in resistant and susceptible warm season turf grasses challenged by Blissus occiduus . Arthropod Plant Interact 2010; 4: 45-55
  • 63 Vandenborre G, Smagghe G, Van Damme EJ. Plant lectins as defense proteins against phytophagous insects. Phytochemistry 2011; 72: 1538-1550
  • 64 Chakraborti D, Sarkar A, Mondal HA, Das S. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora . Transgenic Res 2009; 18: 529-544
  • 65 Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S. Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 2006; 223: 1329-1343
  • 66 Macedo MLR, Freire MGM, Silva MBR, Coelho LC. Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Biochem Physiol A Mol Integr Physiol 2007; 146: 486-498
  • 67 Barbieri L, Falasca A, Franceschi C, Licastro F, Rossit CA, Stirpe F. Purification and properties of two lectins from the latex of the euphorbiaceous plants Hura crepitans L. (sand-box tree) and Euphorbia characias L. (Mediterranean spurge). Biochem J 1983; 215: 433-439
  • 68 Ryan CA. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 1990; 28: 425-449
  • 69 Kim JS, Kim YO, Ryu HJ, Kwak YS, Lee JY, Kang H. Isolation of stress-related genes of plant particles and latex in fig tree (Ficus carica) and their expressions by abiotic stress or plant hormone treatments. Plant Cell Physiol 2003; 44: 412-414
  • 70 Azarkan M, Wintjens R, Looze Y, Baeyens-Volant D. detection of three wound-induced proteins in papaya latex. Phytochemistry 2004; 65: 525-534
  • 71 Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann Bot 2015; 115: 1015-1051
  • 72 Dussourd DE. Entrapment of aphids and whiteflies in lettuce latex. Ann Entomol Soc Am 1995; 88: 163-172
  • 73 Pasteels JM, Gregoire JC. The chemical ecology of defense in arthropods. Ann Rev Entomol 1983; 28: 263-289
  • 74 Seiber JN, Nelson CJ, Lee SM. Cardenolides in the latex and leaves of seven Asclepias species and Calotropis procera . Phytochemsitry 1982; 21: 2343-2348
  • 75 Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hatori M, Konno K. Papain protects papaya trees from herbivorous insects: role of cysteine protease in latex. Plant J 2004; 37: 370-378
  • 76 Konno K, Ono M, Nakamura M, Tateishi K, Hirayama C, Tamura Y, Hatori M, Konno K. Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars. Proc Natl Acad Sci U S A 2006; 103: 1337-1341
  • 77 Sessa R, Benett MH, Lewin MJ, Mansfirls JW, Beale MH. Metabolite profiling of sesquiterpene lactones from Lactuca species. J Biol Chem 2000; 275: 26877-26884
  • 78 Noack EA, Crea AE, Falsone G. Inhibition of mitochondrial oxidative phosphorylation by 4-deoxyphorboltriester, a poisonous constituent of the latex sap of Eupborbia biglantdtlosa Desf. Toxicon 1980; 18: 165-174
  • 79 Gershenzon J, Croteau R. Terpenoids. In: Rosenthal GA, Berenbaum MR. eds. Herbivores: Their Interactions with secondary Plant Metabolites. Vol. 1: The Chemical Participants. 2nd ed.. London: Academic Press Inc; 1991: 165-219
  • 80 Mazid M, Khan TA, Mohammad F. Role of secondary metabolites in defense mechanisms of plants. Biol Med 2011; 3: 232-249
  • 81 Heftmann E. Steroid hormones in plants. J Nat Prod 1975; 38: 195-209
  • 82 Mazoir N, Benharref A, Bailén M, Reina M, González-Coloma A. Bioactive triterpene derivatives from latex of two Euphorbia species. Phytochemistry 2008; 69: 1328-1338
  • 83 Giner JL, Berkowitz JD, Andersson T. Nonpolar components of the latex of Euphorbia peplus . J Nat Prod 2000; 63: 267-269
  • 84 Hjgigh-Valitova JN, Sulkarnayeva AG, Minibayeva FV. Plant sterols: diversity, biosynthesis, and physiological functions. Biochem (Mosc) 2016; 81: 819-834
  • 85 Malcolm SB. Cardenolide-Mediated Interactions between Plants and Herbivores. In: Rosenthal GA, Berenbaum MR. eds. Herbivores: Their Interactions with secondary Plant Metabolites. Vol. 1: The chemical Participants. 2nd ed.. Oxford, UK: Blackwell Scientific; 1991: 251-296
  • 86 Glynn IM. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol 1957; 136: 148-173
  • 87 Repke KRH. New developments in cardiac glycoside structure-activity relationships. Trends Pharmacol Sci 1985; 6: 275-278
  • 88 Paula S, Tabet MR, Ball WJ. Interactions between cardiac glycosides and sodium⁄potassium-ATPase: three-dimensional structure-activity relationship models for ligand binding to the E2-Pi form of the enzyme versus activity inhibition. Biochemistry 2005; 44: 498-510
  • 89 Paul WCG, Veitch NC, Stevenson PC, Simmonds MSJ. Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae: Asclepiadoideae) deter the feeding of Spodoptera littoralis . Arthropod Plant Interact 2011; 5: 219-225
  • 90 Huang X, Renwick JAA, Sachdev-Gupta K. A chemical basis for differential acceptance of Erysimum cheiranthoides by two Pieris species. J Chem Ecol 1993; 19: 195-210
  • 91 Huang X, Renwick JA. Cardenolides as oviposition deterrents to two Pieris species: structure-activity relationships. J Chem Ecol 1994; 20: 1039-1051
  • 92 Renwick JAA. Diversity and Dynamics of Crucifer Defenses against Adults and Larvae of Cabbage Butterflies. In: Romeo JT, Saunders JA, Barbosa P. eds. Recent Advances in Phytochemistry. Phytochemical Diversity and Redundancy in ecological Interactions. New York: Plenum Press; 1996: 57-79
  • 93 Akhtar Y, Rankin CH, Isman MB. Decreased response to feeding deterrents following prolonged exposure in the larvae of a generalist herbivore, Trichoplusia ni (Lepidoptera: Noctuidae). J Insect Behav 2003; 16: 811-831
  • 94 Fukuyama Y, Ochi M, Kasai H, Kodama M. Insect growth inhibitory cardenolide glycosides from Anodendron affine . Phytochemistry 1993; 32: 297-301
  • 95 Carter CA, Gray EA, Schneider TL, Lovett CM, Scott L, Messer AC, Richardson DP. Toxicarioside B and toxicarioside C. New cardenolides isolated from Antiaris toxicaria latex-derived dart poison. Tetrahedron 1997; 53: 16959-16968
  • 96 Dai HF, Gan YJ, Que DM, Wu J, Wen ZC, Mei WL. A new cytotoxic 19-Nor-cardenolide from the latex of Antiaris toxicaria . Molecules 2009; 14: 3694-3699
  • 97 Appel HM. Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 1993; 19: 1521-1552
  • 98 Ismun A, Ariffin MM, Razak SBA, Wei OC, Ahmad FT, Mubarak A. Determination of polyphenol contents in Hevea brasiliensis and rubber-processing effluent. MJAS 2018; 22: 185-196
  • 99 Snook ME. Characterization and quantification of hexadecyl, octadecyl and eicosyl esters of p-coumaric acid in the vine and root latex of sweet potato (Ipomoea batatas (L.) Lam.). J Agric Food Chem 1994; 42: 2589-2595
  • 100 Hegnauer R. Biochemistry, distribution and taxonomic relevance of higher plant alkaloids. Phytochemistry 1988; 21: 2423-2427
  • 101 Harborne JB. Introduction to ecological Biochemistry. 4th ed. San Diego: Academic Press Inc.; 1993: 186-201
  • 102 Hansen I, Brimer L, Mølgaard P. Herbivore-deterring secondary compounds in heterophyllous woody species of the Mascarene Islands. Perspect Plant Ecol Evol Syst 2003; 6: 187-203
  • 103 Macel M. Attract and deter: a dual role for pyrrolizidine alkaloids in plant-insect interactions. Phytochem Rev 2011; 10: 75-82
  • 104 Creelman RA, Mullet JE. Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell 1997; 9: 1211-1223
  • 105 Tomè F, Colombo ML. Distribution of alkaloids in Chelidonium majus and factors affecting their accumulation. Phytochemistry 1995; 40: 37-39
  • 106 Schmeller T, Latz-Brüning B, Wink M. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defense against microorganisms and herbivores. Phytochemistry 1997; 44: 257-266
  • 107 Samanani N, Alcantara J, Bourgault R, Zulak KG, Facchini PJ. The role of phloem sieve element and accumulation of alkaloids in opium poppy. Plant J 2006; 47: 547-563
  • 108 Weid M, Ziegler J, Kutchan TM. The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum . Proc Natl Acad Sci U S A 2004; 101: 13957-13962
  • 109 Asano N, Nash RJ, Molyneux RJ, Fleet GWJ. Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron 2000; 11: 1645-1680
  • 110 Hirayama C, Konno K, Wasano N, Nakamura M. Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: enzymatic adaptation of Bombyx mori to mulberry defense. Insect Biochem Mol Biol 2007; 37: 1348-1358
  • 111 Buttery BR, Boatman SG. Water Deficits and Flow of Latex. In: Kozlowski TT. ed. Water Deficits and Plant Growth. New York: Academic Press; 1976: 233-289
  • 112 Spencer HJ. The effect of puncturing individual latex tubes of Euphorbia wulfenii . Annals of Botany 1939; 3: 227-229
  • 113 Rasmann S, Agrawal AA, Cook SC, Erwin AC. Cardenolides, induced responses, and interactions between above- and belowground herbivores of milkweed (Asclepias spp.). Ecology 2009; 90: 2393-2404
  • 114 Bingham RA, Agrawal AA. Specificity and trade-offs in the induced plant defence of common milkweed Asclepias syriaca to two lepidopteran herbivores. J Ecol 2010; 98: 1014-1022
  • 115 Wang X, Wang D, Sun Y, Yang Q, Chang L, Wang L, Meng X, Huang Q, Jin X, Tong Z. Comprehensive proteomics analysis of laticifer latex reveals new insights into ethylene stimulation of natural rubber production. Sci Rep 2015; 5: 13778
  • 116 Wang X, Shi M, Wang D, Chen Y, Cai F, Zhang S, Wang L, Tong Z, Tian WM. Comparative proteomics of primary and secondary lutoids reveals that chitinase and glucanase play a crucial combined role in rubber particle aggregation in Hevea brasiliensis . J Proteome Res 2013; 12: 5146-5159
  • 117 Zhang Y, Leclercq J, Montoro P. Reactive oxygen species in Hevea brasiliensis latex and relevance to tapping panel dryness. Tree Physiol 2017; 37: 261-269
  • 118 Bauer G, Gorb SN, Klein MC, Nellesen A, von Tapavicza M, Speck T. Comparative study on plant latex particles and latex coagulation in Ficus benjamina, Campanula glomerata and three Euphorbia species. PLoS One 2014; 9: e113336
  • 119 Hierrezuelo J, Vaccaro A, Borkovec M. Stability of negatively charged latex particles in the presence of a strong cationic polyelectrolyte at elevated ionic strengths. J Colloid Interface Sci 2010; 347: 202-208
  • 120 Oncsik T, Trefalt G, Csendes Z, Szilagyi I, Borkovec M. Aggregation of negatively charged colloidal particles in the presence of multivalent cations. Langmuir 2014; 30: 733-741
  • 121 dʼAuzac J, Jacob JL. The Composition of Latex from Hevea brasiliensis as a laticiferous Cytoplasm. In: dʼAuzac J, Jacob JL, Chrestin H. ed. Physiology of Rubber Tree Latex. Boca Raton: CRC Press; 1989: 59-96
  • 122 de Oliveira-Reis G, Menut P, Bonfils F, Vaysse L, Hemar Y, Sanchez C. Acid-induced aggregation and gelation of natural rubber latex particles. Colloid Surf A Physicochem Eng Asp 2015; 482: 9-17
  • 123 Aoki Y, Takahashi S, Takayama D, Ogata Y, Sakurai N, Suzuki H, Asawatreratanakul K, Wititsuwannakul D, Wititsuwannakul R, Shibata D, Koyama T, Nakayama T. Identification of laticifer-specific genes and their promoter regions from a natural rubber producing plant Hevea brasiliensis . Plant Sci 2014; 225: 1-8
  • 124 Wilson D. Endophyte – the evolution of the term, a clarification of its use and definition. Oikos 1995; 73: 274-276
  • 125 Pirttilä AM, Laukkanen H, Pospiech H, Myllyla R, Hohtola A. Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 2000; 66: 3073-3077
  • 126 Pirttilä AM, Pospiech H, Laukkanen H, Myllylä R, Hohtola A. Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L.). Microb Ecol 2003; 45: 53-62
  • 127 Hata K, Atari R, Sone K. Isolation of endophytic fungi from leaves of Pasania edulis and their within-leaf distributions. Mycoscience 2002; 43: 369-373
  • 128 Hata K, Sone K. Isolation of endophytes from leaves of Neolitsea sericea in broad leaf and conifer stands. Mycoscience 2008; 49: 229-232
  • 129 Dudeja SS, Sheokand S, Kumari S. Legume root nodule development and functioning under tropics and subtropics: perspectives and challenges. Legume Res 2012; 35: 85-103
  • 130 Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 2012; 19: 792-798
  • 131 Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D. The endophyte-host interaction: a balanced antagonism. Mycol Res 1999; 103: 1275-1283
  • 132 Schulz B, Boyle C. The endophytic continuum. Mycol Res 2005; 109: 661-686
  • 133 Arnold AE. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 2007; 21: 51-66
  • 134 Schulz B, Boyle C. What are Endophytes?. In: Schulz BJE, Boyle CJC, Sieber TN. eds. Microbial Root Endophytes. Berlin: Springer; 2006: 1-13
  • 135 Arnold AE. Endophytic Fungi: Hidden Components of tropical Community Ecology. In: Carson WP, Schnitzer SA. eds. Tropical Forest Community Ecology. West Sussex: Wiley-Blackwell; 2008: 254-271
  • 136 Kusari S, Spiteller M. Metabolomics of endophytic Fungi producing associated Plant secondary Metabolites: Progress, Challenges and Opportunities. In: Roessner U. ed. Metabolomics. Rijeka: InTech; 2012: 241-266
  • 137 López-Fernández S, Mazzoni V, Pedrazzoli F, Pertot I, Campisano A. A phloem-feeding insect transfers bacterial endophytic communities between grapevine plants. Front Microbiol 2017; 8: 1-17
  • 138 Lafont A. Sur la presence dʼun Leptomonas, parasite de la classe des flagellés, dans le latex de l Euphorbiapilulifera . C R Soc Biol 1909; 66: 1011-1013
  • 139 Bensaude M. Flagellates in plants: a review of foreign literature. Phytopathology 1925; 15: 273-281
  • 140 Aragão HB. Untersuchungen über Phytomonas françai. Mem Inst Oswaldo Cruz 1931; 25: 299-306
  • 141 George EF. Plant Propagation by Tissue Culture. 2nd ed.. Edington, England: Exegetic Limited; 1993: 441
  • 142 Leifert C, Cassells AC. Microbial hazards in plant tissue and cell cultures. In Vitro Cell Dev Biol Plant 2001; 37: 133-138
  • 143 Thomas P. A three-step screening procedure for detection of covert and endophytic bacteria in plant tissue cultures. Curr Sci 2004; 87: 67-72
  • 144 Thomas P. In vitro decline in plant cultures: detection of a legion of covert bacteria as the cause for degeneration of long-term micropropagated triploid watermelon cultures. Plant Cell Tissue Org Cult 2004; 77: 173-179
  • 145 Thomas P, Kumari S, Swarna GK, Prakash DP, Dinesh MR. Ubiquitous presence of fastidious endophytic bacteria in field shoots and index-negative apparently clean shoot-tip cultures of papaya. Plant Cell Rep 2007; 26: 1491-1499
  • 146 Thomas P, Swarna GK, Patil P, Rawal RD. Ubiquitous presence of normally non-cultivable endophytic bacteria in field shoot-tips of banana and their gradual activation to quiescent cultivable form in tissue cultures. Plant Cell Tissue Org Cult 2008; 93: 39-54
  • 147 Thomas P, Kumari S. Inconspicuous endophytic bacteria mimicking latex exudates in shoot-tip cultures of papaya. Sci Hort 2010; 124: 469-474
  • 148 Gunawardana M, Hyde ER, Lahmeyer S, Dorsey BL, La Val TP, Mullen M, Yoo J, Knight R, Baum MM. Euphorbia plant latex is inhabited by diverse microbial communities. Am J Bot 2015; 102: 1966-1977
  • 149 Breitbach UB, Niehues M, Lopes NP, Faria JEQ, Brandão MGL. Amazonian Brazilian medicinal plants described by C. F. P. von Martius in the 19th century. J Ethnopharmacol 2013; 147: 180-189
  • 150 Verma RK. An ethnobotanical study of plants used for the treatment of livestock diseases in Tikamgarh District of Bundelkhand, Central India. Asian Pac J Trop Biomed 2014; 4: S460-S467
  • 151 Merlin MD. Archaeological evidence for the tradition of psychoactive plant use in the Old World. Econ Bot 2003; 57: 295-323
  • 152 Venkatachalam P, Geetha N, Sangeetha P, Thulaseedharan A. Natural rubber producing plants: an overview. Afr J Biotechnol 2013; 12: 1297-1310
  • 153 Siler DJ, Cornish K. Hypoallergenicity of guayule rubber particle proteins compared to Hevea latex proteins. Ind Crops Prod 1994; 2: 307-313
  • 154 Cremaldi JC, Bhushan B. Bioinspired self-healing materials: lessons from nature. Beilstein J Nanotechnol 2018; 9: 907-935
  • 155 Anandan S, Rudolph A, Speck T, Speck O. Comparative morphological and anatomical study of self-repair in succulent cylindrical plant organs. Flora 2018; 241: 1-7
  • 156 Speck O, Speck T. An overview of bioinspired and biomimetic self-repairing materials. Biomimetics 2019; 4: 26
  • 157 Izhaki I. Emodin–a secondary metabolite with multiple ecological functions in higher plants. New Phytol 2002; 155: 205-217
  • 158 Kessler A, Kalske A. Plant secondary metabolite diversity and species interactions. Annu Rev Ecol Evol Syst 2018; 49: 115-138