Planta Med 2019; 85(13): 1054-1072
DOI: 10.1055/a-0943-1908
Biological and Pharmacological Activity
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Chemical Composition and Biological Activities of Essential Oils in the Family Lauraceae: A Systematic Review of the Literature

Carolina Sette Barbosa Damasceno
Postgraduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba, Parana, Brazil
,
Natasha Tiemi Fabri Higaki
Postgraduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba, Parana, Brazil
,
Josiane de Fátima Gaspari Dias
Postgraduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba, Parana, Brazil
,
Marilis Dallarmi Miguel
Postgraduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba, Parana, Brazil
,
Obdulio Gomes Miguel
Postgraduate Program in Pharmaceutical Sciences, Federal University of Parana, Curitiba, Parana, Brazil
› Author Affiliations
Further Information

Publication History

received 18 March 2019
revised 23 May 2019

accepted 28 May 2019

Publication Date:
01 July 2019 (online)

Abstract

The Lauraceae family is predominantly found in Asia and in the rainforests of the Americas, and consists mostly of aromatic trees. Being an essential oil producer, this family is used in the food, pharmaceutical, and cosmetic industries. This work presents a systematic review of the chemical composition and bioactivity of the essential oils from the Lauraceae family. Medline, Scielo, Web of Science, Lilacs, and Scopus were employed to identify articles published between 2000 and 2018, using “Lauraceae”, “essential oil”, and “biological activity” as key words. From 177 studies identified, 53 met the inclusion criteria. These studies indicated a predominance of the compounds β-caryophyllene and 1,8-cineole in Lauraceae species, and highlighted the antioxidant, antifungal, antibacterial, and anti-inflammatory activities. Essential oils extracted from this family thus have high potential for pharmacological applications.

 
  • References

  • 1 Souza VC, Lorenzi H. Botânica sistemática: guia ilustrado para identificação das famílias de Angiospermas da Flora brasileira, baseado em APG II. Instituto Plantarum: Nova Odessa; 2005: 640
  • 2 APG IV (Angiosperm Phylogeny Group IV). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 2016; 181: 1-20
  • 3 Salleh WMNHW, Ahmad F, Yen KH, Zulkifli RM. A review on chemical constituents and biological activities of the genus Beilschmiedia (Lauraceae). Trop J Pharm Res 2015; 14: 2139-2150
  • 4 Li Y, Xie S, Ying J, Wei W, Gao K. Chemical structures of lignans and neolignans isolated from Lauraceae. Molecules 2018; 23: E3164
  • 5 Desgagné-Penix I. Distribution of alkaloids in woody plants. Plant Sci Today 2017; 4: 137-142
  • 6 Chaverri C, Cicció JF. Volatile constituents of the oils from Povedadaphne quadriporata(Lauraceae) from “Alberto M. Brenes” biological preserve, Costa Rica. Quím Nova 2008; 31: 605-609
  • 7 Smith RL, Cohen SM, Doull J, Feron VJ, Goodman JI, Marnett LJ, Portoghese OS, Waddell WJ, Wagner BM, Hall RL, Higley NA, Lucas-Gavin C, Adams TB. A procedure for the safety evaluation of natural flavor complexes used as ingredients in food: essential oils. Food Chem Toxicol 2005; 43: 345-363
  • 8 Dorman HJD, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 2000; 88: 308-316
  • 9 Matos SP, Teixeira HF, de Lima ÁA, Veiga-Junio VF, Koester LS. Essential Oils and Isolated Terpenes in Nanosystems Designed for Topical Administration: A Review. Biomolecules 2019; 9: E138
  • 10 Dewick PM. The biosynthesis of C5–C25 terpenoid compounds. Nat Prod Rep 2002; 19: 181-222
  • 11 Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils–a review. Food Chem Toxicol 2008; 46: 446-475
  • 12 Salleh WMNHW, Ahmad F, Yen KH, Zulkifli RM. Essential oil compositions of Malaysian Lauraceae: a mini review. Pharm Sci 2016; 22: 60-67
  • 13 da Silva JK, Sousa PJC, Andrade EHA, Maia JGS. Antioxidant capacity and cytotoxicity of essential oil and methanol extract of Aniba canelilla (HBK) Mez. J Sci Food Agric 2007; 55: 9422-9426
  • 14 Silva JRDA, do Carmo DF, Reis ÉM, Machado G, Leon LL, da Silva BOD, Ferreira JLP, Amaral ACF. Chemical and biological evaluation of essential oils with economic value from Lauraceae species. J Braz Chem Soc 2009; 20: 1071-1076
  • 15 Simić A, Soković MD, Ristić M, Grujić-Jovanović S, Vukojević J, Marin PD. The chemical composition of some Lauraceae essential oils and their antifungal activities. Phytother Res 2004; 18: 713-717
  • 16 Salleh WMNHW, Ahmad F, Khong HY, Mohamed Zulkifli R. Comparative study of the essential oils of three Beilschmiedia species and their biological activities. Int J Food Sci Tech 2016; 51: 240-249
  • 17 Salleh WM, Ahmad F, Yen KH. Chemical compositions and biological activities of the essential oils of Beilschmiedia madang Blume (Lauraceae). Arch Pharm Res 2015; 38: 485-493
  • 18 Carvajal MA, Vergara AP, Santander R, Osorio ME. Chemical composition and anti-phytopathogenic activity of the essential oil of Beilschmiedia miersii . Nat Prod Commun 2016; 11: 1367-1372
  • 19 Salleh WM, Ahmad F, Yen KH, Zulkifli RM. Chemical composition and biological activities of essential oil of Beilschmiedia pulverulenta . Pharm Biol 2016; 54: 322-330
  • 20 Choi J, Lee KT, Ka H, Jung WT, Jung HJ, Park HJ. Constituents of the essential oil of the Cinnamomum cassia stem bark and the biological properties. Arch Pharm Res 2001; 24: 418-423
  • 21 Chou ST, Chang WL, Chang CT, Hsu SL, Lin YC, Shih Y. Cinnamomum cassia essential oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells. Int J Mol Sci 2013; 14: 19186-19201
  • 22 Kocevski D, Du M, Kan J, Jing C, Lačanin I, Pavlović H. Antifungal effect of Allium tuberosum, Cinnamomum cassia, and Pogostemon cablin essential oils and their components against population of Aspergillus species. J Food Sci 2013; 78: 731-737
  • 23 Jiang H, Wang J, Song L, Cao X, Yao X, Tang F, Yue Y. GC×GC-TOFMS analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora L. Presl and their insecticidal and repellent activities. Molecules 2016; 21: 423
  • 24 Ooi LS, Li Y, Kam SL, Wang H, Wong EY, Ooi VE. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am J Chin Med 2006; 34: 511-522
  • 25 Sun L, Zong SB, Li JC, Lv YZ, Liu LN, Wang ZZ, Zhou J, Cao L, Kou JP, Xiao W. The essential oil from the twigs of Cinnamomum cassia Presl alleviates pain and inflammation in mice. J Ethnopharmacol 2016; 194: 904-912
  • 26 Singh C, Singh S, Pande C, Tewari G, Pande V, Sharma P. Exploration of antimicrobial potential of essential oils of Cinnamomum glanduliferum, Feronia elephantum, Bupleurum hamiltonii and Cyclospermum leptophyllum against foodborne pathogens. Pharm Biol 2013; 51: 1607-1610
  • 27 Taha AM, Eldahshan OA. Chemical characteristics, antimicrobial, and cytotoxic activities of the essential oil of Egyptian Cinnamomum glanduliferum bark. Chem Biodivers 2017; 14: e1600443
  • 28 Chao LK, Hua KF, Hsu HY, Cheng SS, Liu JY, Chang ST. Study on the antiinflammatory activity of essential oil from leaves of Cinnamomum osmophloeum . J Agric Food Chem 2005; 53: 7274-7278
  • 29 Kumar S, Vasudeva N, Sharma S. GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats. Cardiovasc Diabetol 2012; 11: 95
  • 30 Werka JS, Boehme AK, Setzer WN. Biological activities of essential oils from Monteverde, Costa Rica. Nat Prod Commun 2007; 2: 1215-1219
  • 31 Naveed R, Hussain I, Tawab A, Tariq M, Rahman M, Hameed S, Mahmood MS, Siddique AB, Iqbal M. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria. BMC Complement Altern Med 2013; 13: 265
  • 32 Smith-Palmer A, Stewart J, Fyfe L. Inhibition of listeriolysin O and phosphatidylcholine-specific production in Listeria monocytogenes by subinhibitory concentrations of plant essential oils. J Med Microbiol 2002; 51: 567-608
  • 33 Azeredo CM, Santos TG, Maia BH, Soares MJ. In vitro biological evaluation of eight different essential oils against Trypanosoma cruzi, with emphasis on Cinnamomum verum essential oil. BMC Complement Altern Med 2014; 14: 309
  • 34 Monteiro IN, Monteiro SO, Costa-Junior LM, Lima SA, Andrade AEH, Maia JGS, Mouchrek Filho VE. Chemical composition and acaricide activity of an essential oil from a rare chemotype of Cinnamomum verum Presl on Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol 2017; 238: 54-57
  • 35 Deletre E, Chandre F, Williams L, Duménil C, Menut C, Martin T. Electrophysiological and behavioral characterization of bioactive compounds of the Thymus vulgaris, Cymbopogon winterianus, Cuminum cyminum and Cinnamomum zeylanicum essential oils against Anopheles gambiae and prospects for their use as bednet treatments. Parasit Vectors 2015; 8: 316
  • 36 Trajano VN, Lima EDO, Travassos AE, Souza ELD. Inhibitory effect of the essential oil from Cinnamomum zeylanicum Blume leaves on some food-related bacteria. Food Sci Technol 2010; 30: 771-775
  • 37 Han X, Parker TL. Antiinflammatory activity of cinnamon (Cinnamomum zeylanicum) bark essential oil in a human skin disease model. Phytother Res 2017; 31: 1034-1038
  • 38 Ben-Fadhel Y, Saltaji S, Khlifi MA, Salmieri S, Vu KD, Lacroix M. Active edible coating and γ-irradiation as cold combined treatments to assure the safety of broccoli florets (Brassica oleracea L.). Int J Food Microbiol 2017; 241: 30-38
  • 39 Bartoňková I, Dvořák Z. Essential oils of culinary herbs and spices display agonist and antagonist activities at human aryl hydrocarbon receptor AhR. Food Chem Toxicol 2018; 111: 374-384
  • 40 Brnawi WI, Hettiarachchy NS, Horax R, Kumar-Phillips G, Seo HS, Marcy J. Comparison of cinnamon essential oils from leaf and bark with respect to antimicrobial activity and sensory acceptability in strawberry shake. J Food Sci 2018; 83: 475-480
  • 41 Lorca MA, Canales CL, Valenzuela CG, Concha EB, Chait AB, Navarrete EP, Berner MB. Efectos antimicrobianos de extractos de plantas chilenas de las familias Lauraceae y Atherospermataceae. Rev Cuba Plantas Med 2012; 17: 73-83
  • 42 Yamaguchi KK, Veiga-Junior VF, Pedrosa TN, Vasconcellos MC, Lima ES. Atividades biológicas dos óleos essenciais de Endlicheria citriodora, uma Lauraceae rica em geranato de metila. Quim Nova 2013; 36: 826-830
  • 43 Marzouki H, Khaldi A, Chamli R, Bouzid S, Piras A, Falconieri D, Marongiu B. Biological activity evaluation of the oils from Laurus nobilis of Tunisia and Algeria extracted by supercritical carbon dioxide. Nat Prod Res 2009; 23: 230-237
  • 44 Ozcan B, Esen M, Sangun MK, Coleri A, Caliskan M. Effective antibacterial and antioxidant properties of methanolic extract of Laurus nobilis seed oil. J Environ Biol 2010; 31: 637-641
  • 45 Ramos C, Teixeira B, Batista I, Matos O, Serrano C, Neng NR, Nogueira JMF, Nunes ML, Marques A. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Nat Prod Res 2012; 26: 518-529
  • 46 Dadalioglu I, Evrendilek GA. Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. J Agric Food Chem 2004; 52: 8255-8260
  • 47 Saab AM, Tundis R, Loizzo MR, Lampronti I, Borgatti M, Gambari R, Menichini F, Esseily F, Menichini F. Antioxidant and antiproliferative activity of Laurus nobilis L. (Lauraceae) leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells. Nat Prod Res 2012; 26: 1741-1745
  • 48 Caputo L, Nazzaro F, Souza LF, Aliberti L, De Martino L, Fratianni F, Coppola R, De Feo V. Laurus nobilis: Composition of essential oil and its biological activities. Molecules 2017; 22: E930
  • 49 Da Silva JK, Gomes M, Dosoky N, Maia JG, Setzer W. Chemical composition and in vitro biological activities of essential oil chemotypes of Licaria rigida (Kosterm.) Kosterm.(Lauraceae). Int J Appl Res Nat Prod 2016; 9: 1-9
  • 50 Comai S, DallʼAcqua S, Grillo A, Castagliuolo I, Gurung K, Innocenti G. Essential oil of Lindera neesiana fruit: chemical analysis and its potential use in topical applications. Fitoterapia 2010; 81: 11-16
  • 51 Liu TT, Yang TS. Antimicrobial impact of the components of essential oil of Litsea cubeba from Taiwan and antimicrobial activity of the oil in food systems. Int J Food Microbiol 2012; 156: 68-75
  • 52 Vongsombath C, Pålsson K, Björk L, Borg-Karlson AK, Jaenson TG. Mosquito (Diptera: Culicidae) repellency field tests of essential oils from plants traditionally used in Laos. J Med Entomol 2014; 49: 1398-1404
  • 53 Yang Y, Jiang J, Qimei L, Yan X, Zhao J, Yuan H, Qin Z, Wang M. The fungicidal terpenoids and essential oil from Litsea cubeba in Tibet. Molecules 2010; 15: 7075-7082
  • 54 Nguyen HV, Caruso D, Lebrun M, Nguyen NT, Trinh TT, Meile JC, Son SK, Sarter S. Antibacterial activity of Litsea cubeba (Lauraceae, May Chang) and its effects on the biological response of common carp Cyprinus carpio challenged with Aeromonas hydrophila . J Appl Microbiol 2016; 121: 341-351
  • 55 Da Silva JKR, Andrade EHA, Mourao RHV, Maia JGS, Dosoky NS, Setzer WN. Chemical profile and in vitro biological activities of essential oils of Nectandra puberula and N. cuspidata from the Amazon. Nat Prod Commun 2017; 12: 131-134
  • 56 Jani NA, Sirat HM, Ahmad F, Mohamad ANA, Jamil M. Chemical profiling and biological properties of Neolitsea kedahense Gamble essential oils. Nat Prod Res 2017; 31: 2793-2796
  • 57 Damasceno CSB, Oliveira LFD, Szabo EM, Souza ÂM, Dias JFG, Miguel MD, Miguel OG. Chemical composition, antioxidant and biological activity of Ocotea bicolor Vattimo-Gil (LAURACEAE) essential oil. Braz J Pharm Sci 2017; 53: e17298
  • 58 da Silva JK, da Trindade R, Moreira E, Maia J, Dosoky N, Miller R, Cseke LJ, Setzer W. Chemical diversity, biological activity, and genetic aspects of three Ocotea species from the Amazon. Int J Mol Sci 2017; 18: 1081
  • 59 Gil E, Cuca LE, Delgado WA. Chemical composition and antimicrobial activity of the essential o il of the leaves of Ocotea caudata (Nees) Mez (Lauraceae) from Colombia. B Latinoam Caribe Pl 2016; 15: 258-263
  • 60 Barbosa-Filho JM, Cunha RM, Dias CS, Athayde-Filho PF, Silva MS, Da-Cunha EVL, Machado MIL, Craveiro AA, Medeiros IA. GC-MS analysis and cardiovascular activity of the essential oil of Ocotea duckei . Rev Bras Farmacogn 2008; 18: 37-41
  • 61 Bruni R, Medici A, Andreotti E, Fantin C, Muzzoli M, Dehesa M, Romagnoli C, Sacchetti G. Chemical composition and biological activities of Ishpingo essential oil, a traditional Ecuadorian spice from Ocotea quixos (Lam.) Kosterm. (Lauraceae) flower calices. Food Chem 2004; 85: 415-421
  • 62 Menut C, Bessiere JM, Said Hassani M, Buchbauer G, Schopper B. Chemical and biological studies of Ocotea comoriensis bark essential oil. Flavour Fragr J 2002; 17: 459-461
  • 63 Alcântara JM, Yamaguchi KDL, Silva JDA, Veiga-Junior VFD. Composição química e atividade biológica dos óleos essenciais das folhas e caules de Rhodostemonodaphne parvifolia Madriñán (Lauraceae). Acta Amaz 2010; 40: 567-572
  • 64 Tabanca N, Avonto C, Wang M, Parcher JF, Ali A, Demirci B, Raman V, Khan IA. . 2013; 61: 12283-12291
  • 65 Sköld M, Karlberg AT, Matura M, Börje A. The fragrance chemical β-caryophyllene – air oxidation and skin sensitization. Food Chem Toxicol 2006; 44: 538-545
  • 66 Fernandes ES, Passos GF, Medeiros R, da Cunha FM, Ferreira J, Campos MM, Pianowski LF, Calixto JB. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea . Eur J Pharmacol 2007; 569: 228-236
  • 67 Viveros-Paredes J, González-Castañeda R, Gertsch J, Chaparro-Huerta V, López-Roa R, Vázquez-Valls E, Beas-Zarate C, Camins-Espuny A, Flores-Soto M. Neuroprotective effects of β-caryophyllene against dopaminergic neuron injury in a murine model of parkinsonʼs disease induced by MPTP. Pharmaceuticals 2017; 10: E60
  • 68 Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, Majid AM. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna . Molecules 2015; 20: 11808-11829
  • 69 Chavan MJ, Wakte PS, Shinde DB. Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine 2010; 17: 149-151
  • 70 Kehrl W, Sonnemann U, Dethlefsen U. Therapy for acute nonpurulent rhinosinusitis with cineole: results of a double-blind, randomized, placebo-controlled trial. Laryngoscope 2004; 114: 738-742
  • 71 Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir Med 2003; 97: 250-256
  • 72 Juergens UR, Stober M, Schmidt-Schilling L, Kleuver T, Vetter H. Antiinflammatory effects of eucalyptol (1.8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human blood monocytes ex vivo . Eur J Med Res 1998; 3: 407-412
  • 73 Worth H, Schacher C, Dethlefsen U. Concomitant therapy with Cineole (Eeucalyptole) reduces exacerbations in COPD: a placebo-controlled double-blind trial. Respir Res 2009; 10: 69
  • 74 Nascimento RFN, Refosco RMC, Vasconcelos ECF, Kerntopf MR, Santos CF, Batista FJA, de Sousa CM, Fonteles MC. 1, 8-Cineole induces relaxation in rat and guinea-pig airway smooth muscle. J Pharm Pharmacol 2009; 61: 361-366
  • 75 Lapczynski A, Letizia CS, Api AM. Addendum to Fragrance material review on linalool. Food Chem Toxicol 2008; 46: 190-192
  • 76 Guzmán-Gutiérrez SL, Bonilla-Jaime H, Gómez-Cansino R, Reyes-Chilpa R. Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci 2015; 128: 24-29
  • 77 Mehri S, Meshki MA, Hosseinzadeh H. Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem Toxicol 2015; 38: 162-166
  • 78 Sabogal-Guáqueta AM, Osorio E, Cardona-Gómez GP. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimerʼs mice. Neuropharmacology 2016; 102: 111-120
  • 79 Wright BS, Bansal A, Moriarity DM, Takaku S, Setzer WN. Cytotoxic leaf essential oils from Neotropical Lauraceae: Synergistic effects of essential oil components. Nat Prod Commun 2007; 12: 1241-1244
  • 80 Skaltsa HD, Demetzos C, Lazari D, Sokovic M. Essential oil analysis and antimicrobial activity of eight Stachys species from Greece. Phytochemistry 2003; 64: 743-752
  • 81 Guo X, Shang X, Li B, Zhou XZ, Wen H, Zhang J. Acaricidal activities of the essential oil from Rhododendron nivale Hook. f. and its main compund, δ-cadinene against Psoroptes cuniculi . Vet Parasitol 2017; 236: 51-54
  • 82 Ruiz-Reyes E, Suarez M. Lactonas sesquiterpénicas. Diversidad estructural y sus actividades biológicas. Rev CENIC Cienc Biol 2015; 46: 9-24
  • 83 Rufino AT, Ribeiro M, Judas F, Salgueiro L, Lopes MC, Cavaleiro C, Mendes AF. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J Nat Prod 2014; 77: 264-269
  • 84 Kim DS, Lee HJ, Jeon YD, Han YH, Kee JY, Kim HJ, Kang JW, Lee BS, Kim SH, Kim SJ, Park SH, Choi BM, Park SJ, Um SJ. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chin Med 2015; 43: 731-742
  • 85 Pinheiro MA, Magalhães RM, Torres DM, Cavalcante RC, Mota FSX, Oliveira Coelho EM, Moreira HP, Lima GC, Araújo PCC, Cardoso JHL, Souza ANC, Diniz LRL. Gastroprotective effect of alpha-pinene and its correlation with antiulcerogenic activity of essential oils obtained from Hyptis species. Pharmacogn Mag 2015; 11: 123-130
  • 86 Aprotosoaie AC, Hăncianu M, Costache II, Miron A. Linalool: a review on a key odorant molecule with valuable biological properties. Flavour Fragr J 2014; 29: 193-219
  • 87 Raguso RA. More lessons from linalool: insights gained from a ubiquitous floral volatile. Curr Opin Plant Biol 2016; 32: 31-36
  • 88 Silva LL, Balconi LS, Gressler LT, Garlet QI, Sutili FJ, Vargas AP, Baldisserotto B, Morel AF, Heinzmann BM. S-(+)-and R-(−)-linalool: a comparison of the in vitro anti-Aeromonas hydrophila activity and anesthetic properties in fish. An Acad Bra Ciênc 2017; 89: 203-212
  • 89 De Sousa DP, Nóbrega FF, Santos CC, de Almeida RN. Anticonvulsant activity of the linalool enantiomers and racemate: investigation of chiral influence. Nat Prod Commun 2010; 5: 1847-1851
  • 90 Barreiros ALS, David JM, David JP. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Quím Nova 2006; 29: 113-123
  • 91 Chorilli M, Leonardi GR, Salgado HRN. Radicais livres e antioxidantes: conceitos fundamentais para aplicação em formulações farmacêuticas e cosméticas. Rev Bras Farmacogn 2007; 88: 113-118
  • 92 Halliwell B. The antioxidant paradox. Lancet 2000; 355: 1179-1180
  • 93 Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408: 239-247
  • 94 Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015; 30: 11-26
  • 95 Ferreira ALA, Matsubara LS. Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Rev Assoc Med Bras 1997; 43: 61-68
  • 96 Ramalho VC, Jorge N. Antioxidantes utilizados em óleos, gorduras e alimentos gordurosos. Quím Nova 2006; 29: 755-760
  • 97 González-Lamothe R, Mitchell G, Gattuso M, Diarra MS, Malouin F, Bouarab K. Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 2009; 10: 3400-3419
  • 98 Chanda S, Rakholiya K. Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. Microbiol Book Series 2011; 1: 520-529
  • 99 Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem 2003; 10: 813-829
  • 100 Burt SA. Essential oils: their antibacterial properties and potential applications in foods: a review. Int J Food Microbiol 2004; 94: 223-253
  • 101 Delaquis PJ, Stanich K, Girard B, Mazza G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 2002; 74: 101-109
  • 102 Farnsworth NR. Biological and phytochemical screening of plants. J Pharm Sci 1996; 55: 225-276
  • 103 Zacchino S. Estratégia para a descoberta de novos agentes antifúngicos. In: Yunes RA, Calixto JB. editors Plantas medicinais sob a ótica da química medicinal moderna. Chapecó: Argos; 2001: 435-479
  • 104 Antunes MDC, Cavacob A. The use of essential oils for postharvest decay control. A review. Flavour Fragr J 2010; 25: 351-366
  • 105 Gilles M, Zhao J, An M, Agboola S. Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chem 2010; 119: 731-737
  • 106 Hammer KA, Carson CF, Riley TV. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae . J Antimicrob Chemother 2004; 53: 1081-1085
  • 107 Pozzatti P, Scheid LA, Spader TB, Atayde ML, Santurio JM, Alves SH. In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant and fluconazole-susceptible Candida spp. Can J Microbiol 2008; 54: 950-960
  • 108 Stites DP, Terr AI, Parslow TG. Imunologia Médica. Rio de Janeiro: Guanabara Koogan; 2004: 684
  • 109 Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 2007; 147: 227-235
  • 110 Gomes A, Fernandes E, Lima JL, Mira L, Corvo ML. Molecular mechanisms of antiinflammatory activity mediated by flavonoids. Curr Med Chem 2008; 15: 1586-1605
  • 111 Miguel MG. Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules 2010; 15: 9252-9287
  • 112 Amarante CB, Müller AH, Póvoa MM, Dolabela MF. Estudo fitoquímico biomonitorado pelos ensaios de toxicidade frente à Artemia salina e de atividade antiplasmódica do caule de aninga (Montrichardia linifera). Acta Amaz 2011; 41: 431-434
  • 113 Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L. Cell Viability Assays. In: Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Auld D, Baell J, Caaveiro JMM, Chung TDY, Dahlin JL, Devanaryan V, Foley TL, Glicksman M, Hall MD, Haas JV, Inglese J, Iversen PW, Kahl SD, Kales SC, Lal-Nag M, Li Z, McGee J, Riss T, Trask J, Weidner JR, Wildey MJ, Xia M, Xu X. eds. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004
  • 114 Setzer WN, Stokes SL, Penton AF, Takaku S, Haber WA, Hansell E, Caffrey CR, McKerrow JH. Cruzain inhibitory activity of leaf essential oils of Neotropical Lauraceae and essential oil components. Nat Prod Commun 2007; 2: 1203-1210
  • 115 Singh G, Maurya S, de Lampasona MP, Catalan CA. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol 2007; 45: 1650-1661
  • 116 Wu X, Vogler B, Haber WA, Setzer WN. A phytochemical investigation of Nectandra membranacea from Monteverde, Costa Rica. Nat Prod Commun 2006; 1: 465-468
  • 117 Takaku S, Haber WA, Setzer WN. Leaf essential oil composition of 10 species of Ocotea (Lauraceae) from Monteverde, Costa Rica. Biochem Syst Ecol 2007; 35: 525-532