Planta Med 2019; 85(17): 1326-1350
DOI: 10.1055/a-1014-1075
Biological and Pharmacological Activity
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Pistacia Genus as a Potential Source of Neuroprotective Natural Products

Reihaneh Moeini
1   Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
2   Department of Persian Medicine, School of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
,
Zahra Memariani
1   Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
2   Department of Persian Medicine, School of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
,
Farideh Asadi
3   Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
,
Mahbubeh Bozorgi
4   Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
,
Narjes Gorji
1   Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
2   Department of Persian Medicine, School of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
› Author Affiliations
Further Information

Publication History

received 31 March 2019
revised 14 September 2019

accepted 16 September 2019

Publication Date:
11 October 2019 (online)

Abstract

Neuroprotective agents are able to defend the central nervous system against acute or chronic neuronal injuries. Even with the progress made over the last decades, most of the medications prescribed for the management of neurodegenerative diseases can only reduce their symptoms and slow down their progression. Based on natural product research, there are potential effective medicinal plants and phytochemicals for modulating neuronal functions and protecting against neurodegeneration. Plants in the genus Pistacia are also among valuable natural resources for neuroprotection research based on experiences in traditional medicine. Studies have supported the value of bioactive compounds of the genus Pistacia for central nervous system disorders such as Alzheimerʼs, Parkinsonʼs, multiple sclerosis, cerebral ischemia, depression, and anxiety. Related literature has also revealed that most of the evidence on neuroprotection in the genus Pistacia is in the form of preliminary studies, mainly including models of behavior, motor function, and memory impairments in animals, neural toxicity, cerebral ischemia and seizure models, evaluation of their effects on antioxidant and inflammatory biomarkers, amyloid β aggregation, and acetylcholinesterase as well as investigations into some cellular pathways. Along with the phytonutrients in kernels such as pistachios, various phytochemicals, mostly terpenes, and phenolic compounds have also been identified in different plant parts, in particular their oleoresins, of species in the genus Pistacia. In this review, the pharmacology of neurological effects and related molecular mechanisms of the plants belonging to the genus Pistacia and its active constituents, as well as pharmacokinetics aspects, are discussed.

 
  • References

  • 1 Parvez MK. Natural or plant products for the treatment of neurological disorders: current knowledge. Curr Drug Metab 2018; 19: 424-428
  • 2 Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev 2012; 6: 81-90
  • 3 Elufioye TO, Berida TI, Habtemariam S. Plants-derived neuroprotective agents: cutting the cycle of cell death through multiple mechanisms. Evid Based Complement Alternat Med 2017; 2017: 3574012
  • 4 Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 2017; 9: a028035
  • 5 Chen X, Pan W. The treatment strategies for neurodegenerative diseases by integrative medicine. Integr Med Int 2014; 1: 223-225
  • 6 Kumar GP, Anilakumar K, Naveen S. Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Pharmacogn J 2015; 7: 1-17
  • 7 Iriti M, Vitalini S, Fico G, Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 2010; 15: 3517-3555
  • 8 Bagli E, Goussia A, Moschos MM, Agnantis N, Kitsos G. Natural compounds and neuroprotection: mechanisms of action and novel delivery systems. In Vivo 2016; 30: 535-547
  • 9 Rauf A, Patel S, Uddin G, Siddiqui BS, Ahmad B, Muhammad N, Mabkhot YN, Hadda TB. Phytochemical, ethnomedicinal uses and pharmacological profile of genus Pistacia . Biomed Pharmacother 2017; 86: 393-404
  • 10 Al-Saghir MG, Porter DM. Stomatal distribution in Pistacia sp.(Anacardiaceae). Int J Bot 2005; 1: 183-187
  • 11 Dimas KS, Pantazis P, Ramanujam R. Chios mastic gum: a plant-produced resin exhibiting numerous diverse pharmaceutical and biomedical properties. In Vivo 2012; 26: 777-785
  • 12 Bouasla A, Bouasla I. Ethnobotanical survey of medicinal plants in northeastern of Algeria. Phytomedicine 2017; 36: 68-81
  • 13 Zargaran A, Zarshenas MM, Karimi A, Yarmohammadi H, Borhani-Haghighi A. Management of stroke as described by Ibn Sina (Avicenna) in the Canon of Medicine. Int J Cardiol 2013; 169: 233-237
  • 14 Scherrer AM, Motti R, Weckerle CS. Traditional plant use in the areas of Monte Vesole and Ascea, Cilento National Park (Campania, Southern Italy). J Ethnopharmacol 2005; 97: 129-143
  • 15 Palmese MT, Uncini Manganelli RE, Tomei PE. An ethno-pharmacobotanical survey in the Sarrabus district (south-east Sardinia). Fitoterapia 2001; 72: 619-643
  • 16 Trabelsi H, Cherif OA, Sakouhi F, Villeneuve P, Renaud J, Barouh N, Boukhchina S, Mayer P. Total lipid content, fatty acids and 4-desmethylsterols accumulation in developing fruit of Pistacia lentiscus L. growing wild in Tunisia. Food Chem 2012; 131: 434-440
  • 17 Memariani Z, Sharifzadeh M, Bozorgi M, Hajimahmoodi M, Farzaei MH, Gholami M, Siavoshi F, Saniee P. Protective effect of essential oil of Pistacia atlantica Desf. on peptic ulcer: role of alpha-pinene. J Tradit Chin Med 2017; 37: 57-63
  • 18 Khorasani MA. Makhzan al Advieh (The Storehouse of Medicaments). Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences. Tehran, Iran: Bavardaran Press (In Persian); 2001
  • 19 Gholami M, Ghasemi-Niri SF, Maqbool F, Baeeri M, Memariani Z, Pousti I, Abdollahi M. Experimental and Pathalogical study of Pistacia atlantica, butyrate, Lactobacillus casei and their combination on rat ulcerative colitis model. Pathol Res Pract 2016; 212: 500-508
  • 20 Ahmed HM. Traditional uses of Kurdish medicinal plant Pistacia atlantica subsp. kurdica Zohary in Ranya, Southern Kurdistan. Genet Resour Crop Evol 2017; 64: 1473-1484
  • 21 Saber-Tehrani M, Givianrad M, Aberoomand-Azar P, Waqif-Husain S, Jafari Mohammadi S. Chemical composition of Iranʼs Pistacia atlantica cold-pressed oil. J Chem 2012; 2013: 126106
  • 22 Bozorgi M, Memariani Z, Mobli M, Salehi Surmaghi MH, Shams-Ardekani MR, Rahimi R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): a review of their traditional uses, phytochemistry, and pharmacology. ScientificWorldJournal 2013; 2013: 219815
  • 23 Al-Saghir M. Evolutionary history of the genus Pistacia (Anacardiaceae). Int J Botany 2009; 5: 255-257
  • 24 Orhan I, Kupeli E, Aslan M, Kartal M, Yesilada E. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L. J Ethnopharmacol 2006; 105: 235-240
  • 25 Lev E, Amar Z. Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J Ethnopharmacol 2002; 82: 131-145
  • 26 Uddin G, Rauf A, Rehman T, Qaisar M. Phytochemical screening of Pistacia chinensis var. integerrima . Middle East J Sci Res 2011; 7: 707-711
  • 27 Shirole R, Shirole N, Saraf M. In vitro relaxant and spasmolytic effects of essential oil of Pistacia integerrima Stewart ex Brandis Galls. J Ethnopharmacol 2015; 168: 61-65
  • 28 Couladis M, Özcan M, Tzakou O, Akgül A. Comparative essential oil composition of various parts of the turpentine tree (Pistacia terebinthus L) growing wild in Turkey. J Sci Food Agric 2003; 83: 136-138
  • 29 Topçu G, Ay M, Bilici A, Sarıkürkcü C, Öztürk M, Ulubelen A. A new flavone from antioxidant extracts of Pistacia terebinthus . Food Chem 2007; 103: 816-822
  • 30 Cakilcioglu U, Khatun S, Turkoglu I, Hayta S. Ethnopharmacological survey of medicinal plants in Maden (Elazig-Turkey). J Ethnopharmacol 2011; 137: 469-486
  • 31 Golchin L, Shabani M, Harandi S, Razavinasab M. Pistachio supplementation attenuates motor and cognition impairments induced by cisplatin or vincristine in rats. Adv Biomed Res 2015; 4: 92
  • 32 Pak-Hashemi M, Hassanipour M, Mohammadinasab M, Kaeidi A, Shamsizadeh A, Hakimizadeh E, Allahtavakoli M, Fatemi I. Study the effects of Pistacia vera seed (pistachio) oil on working memory and spatial learning and memory. PHJ 2018; DOI: 10.22123/PHJ.2018.146958.1016.
  • 33 Salari E, Baloochi M, Shamsizadeh A, Ayoobi F, Allahtavakoli M, Taghavi Y, Ravari A. Effect of the hydroalcoholic extract of pistachio on avoidance learning in male Wistar rats. JOHE 2014; 3: 180-187
  • 34 Jazayeri SB, Amanlou A, Ghanadian N, Pasalar P, Amanlou M. A preliminary investigation of anticholinesterase activity of some Iranian medicinal plants commonly used in traditional medicine. Daru 2014; 22: 17
  • 35 Gholamhoseinian A, Moradi M, Sharifi-Far F. Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity. Res Pharm Sci 2009; 4: 105
  • 36 Rostampour M, Hadipour E, Oryan S, Soltani B, Saadat F. Anxiolytic-like effect of hydroalcoholic extract of ripe pistachio hulls in adult female Wistar rats and its possible mechanisms. Res Pharm Sci 2016; 11: 454-460
  • 37 Kim JK, Shin EC, Kim CR, Park GG, Choi SJ, Cho HY, Shin DH. Composition of fatty acids in commercially available tree nuts and their relationship with protective effects against oxidative stress-induced neurotoxicity. Food Sci Biotechnol 2013; 22: 1097-1104
  • 38 Mansouri SMT, Naghizadeh B, Hosseinzadeh H. The effect of Pistacia vera L. gum extract on oxidative damage during experimental cerebral ischemia-reperfusion in rats. Iran Biomed J 2005; 9: 181-185
  • 39 Mansouri S, Naghizadeh B, Hosseinzadeh H. Evaluation the neuroprotective effect of Pistacia vera L. gum extract against cerebral ischemia-reperfusion model of rats. Toxicol Lett 2011; 205: S297
  • 40 Ziaee TT, Hosseinzadeh H. Muscle relaxant, hypnotic and anti-anxiety effects of Pistacia vera gum hydroalcoholic extract in mice. J Med Plant 2010; 9: 96-105 207
  • 41 Fatehi F, Fatemi I, Shamsizadeh A, Hakimizadeh E, Bazmandegan G, Khajehasani F, Rahmani M. The effect of hydroalcoholic extract of Pistacia vera on pentylenetetrazole-induced kindling in rat. Res J Pharmacogn 2017; 4: 45-51
  • 42 Ammari M, Othman H, Hajri A, Sakly M, Abdelmelek H. Pistacia lentiscus oil attenuates memory dysfunction and decreases levels of biomarkers of oxidative stress induced by lipopolysaccharide in rats. Brain Res Bull 2018; 140: 140-147
  • 43 Benamar H, Rached W, Derdour A, Marouf A. Screening of Algerian medicinal plants for acetylcholinesterase inhibitory activity. J Biol Sci 2010; 10: 1-9
  • 44 Roghani M. A study on inhibitory effect of ethanolic extract of the Pistacia lentiscus on acetylcholinesterase activity. JBCP 2017; 5: 39-44
  • 45 Adhami HR, Farsam H, Krenn L. Screening of medicinal plants from Iranian traditional medicine for acetylcholinesterase inhibition. Phytother Res 2011; 25: 1148-1152
  • 46 Dhouafli Z, Rigacci S, Leri M, Bucciantini M, Mahjoub B, Tounsi MS, Wannes WA, Stefani M, Hayouni EA. Screening for amyloid-β aggregation inhibitor and neuronal toxicity of eight Tunisian medicinal plants. Ind Crop Prod 2018; 111: 823-833
  • 47 Pacifico S, Piccolella S, Marciano S, Galasso S, Nocera P, Piscopo V, Fiorentino A, Monaco P. LC-MS/MS profiling of a mastic leaf phenol enriched extract and its effects on H2O2 and Abeta(25–35) oxidative injury in SK-B-NE(C)-2 cells. J Agric Food Chem 2014; 62: 11957-11966
  • 48 Quartu M, Serra MP, Boi M, Pillolla G, Melis T, Poddighe L, Del Fiacco M, Falconieri D, Carta G, Murru E, Cordeddu L, Piras A, Collu M, Banni S. Effect of acute administration of Pistacia lentiscus L. essential oil on rat cerebral cortex following transient bilateral common carotid artery occlusion. Lipids Health Dis 2012; 11: 8
  • 49 Benamar H, Marouf A, Bennaceur M. Phytochemical composition, antioxidant and acetylcholinesterase inhibitory activities of aqueous extract and fractions of Pistacia atlantica subsp. atlantica from Algeria. J Herbs Spices Med Plants 2018; 24: 229-244
  • 50 Peksel A, Arisan I, Yanardag R. Radical scavenging and anti-acetylcholinesterase activities of aqueous extract of wild pistachio (Pistacia atlantica Desf.) leaves. Food Sci Biotechnol 2013; 22: 515-522
  • 51 Peksel A, Arisan-Atac I, Yanardag R. Evaluation of antioxidant and antiacetylcholinesterase activities of the extracts of Pistacia atlantica desf. leaves. J Food Biochem 2010; 34: 451-476
  • 52 Labed-Zouad I, Ferhat M, Öztürk M, Abaza I, Nadeem S, Kabouche A, Kabouche Z. Essential Oils Composition, Anticholinesterase and Antioxidant Activities of Pistacia atlantica Desf. Rec Nat Prod 2017; 11: 411-415
  • 53 Rashidi S, Askari N, Abbasnejad M. Anxiolytic-like effect of Pistacia atlantica fruit in intact and gonadectomized rats subjected to chronic stress. JOHE 2014; 3: 152-159
  • 54 Mohammadzadeh M, Babaeifar F, Babaei F. Combination thrapy of hydroalcoholic extract of Pistacia atlantica kurdica and fluvoxamine on spatial memory of immobilization rat. J Gorgan Univ Med Sci 2017; 19: 24-31
  • 55 Fewell W, van de Venter M, Marouf A, Houari B, Koekemoer T. An assessment of the in vitro neuroprotective properties of selected Algerian and South African medicinal plant extracts. Planta Med 2014; 80: P2B43
  • 56 Ansari SH, Qadry JS, Ali M. Essential oils of Pistacia integerrima galls and their effect on the central nervous system. Int J pharmacogn 1993; 31: 89-95
  • 57 Zahoor M, Zafar R, Rahman NU. Isolation and identification of phenolic antioxidants from Pistacia integerrima gall and their anticholine esterase activities. Heliyon 2018; 4: e01007
  • 58 Jain PD, Tambe RM, Sancheti JS, Nahire MS, Bhardwaj AK, Sathaye S. Screening of Pistacia integerrima extracts for their anticonvulsant activity in acute zebrafish and rodent models of epilepsy. Int J Nutr Pharmacol Neurol Dis 2015; 5: 56
  • 59 Orhan IE, Senol FS, Gulpinar AR, Sekeroglu N, Kartal M, Sener B. Neuroprotective potential of some terebinth coffee brands and the unprocessed fruits of Pistacia terebinthus L. and their fatty and essential oil analyses. Food Chem 2012; 130: 882-888
  • 60 Prakash D, Gupta C. Phytopharmaceutical applications of nutraceutical and functional foods. In: Information Resources Management Association. Complementary and alternative medicine: breakthroughs in research and practice. Hershey, Pennsylvania: IGI Global; 2019: 182-204
  • 61 Polo-Hernandez E, Tello V, Arroyo AA, Domínguez-Prieto M, de Castro F, Tabernero A, Medina JM. Oleic acid synthesized by stearoyl-CoA desaturase (SCD-1) in the lateral periventricular zone of the developing rat brain mediates neuronal growth, migration and the arrangement of prospective synapses. Brain Res 2014; 1570: 13-25
  • 62 Gao H, Yan P, Zhang S, Nie S, Huang F, Han H, Deng Q, Huang Q, Yang W, Wu H. Chronic alpha-linolenic acid treatment alleviates age-associated neuropathology: roles of PERK/eIF2α signaling pathway. Brain Behav Immun 2016; 57: 314-325
  • 63 Shirooie S, Nabavi SF, Dehpour AR, Belwal T, Habtemariam S, Argüelles S, Sureda A, Daglia M, Tomczyk M, Sobarzo-Sanchez E, Xu S, Nabavi SM. Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration?. Pharmacol Res 2018; 135: 37-48
  • 64 Gorji N, Moeini R, Memariani Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimerʼs disease: A neuropharmacological review of their bioactive constituents. Pharmacol Res 2018; 129: 115-127
  • 65 Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds?. New Phytol 2018; 220: 692-702
  • 66 Yoram G, Inbar M. Distinct antimicrobial activities in aphid galls on Pistacia atlantica . Plant Signal Behav 2011; 6: 2008-2012
  • 67 Pinheiro M de A, Magalhães RM, Torres DM, Cavalcante RC, Mota FS, Oliveira Coelho EM, Moreira HP, Lima GC, Araújo PC, Cardoso JH, de Souza AN, Diniz LR. Gastroprotective effect of alpha-pinene and its correlation with antiulcerogenic activity of essential oils obtained from Hyptis species. Pharmacogn Mag 2015; 11: 123
  • 68 Yang H, Woo J, Pae AN, Um MY, Cho NC, Park KD, Yoon M, Kim J, Lee CJ, Cho S. α-Pinene, a major constituent of pine tree oils, enhances non-rapid eye movement sleep in mice through GABAA-benzodiazepine receptors. Mol Pharmacol 2016; 90: 530-539
  • 69 Shekhany HKA, Ahmed HA. The study of chemical composition of gum in Pistacia atlantica in Erbil region. Zanco J Pure Appl Sci 2018; 30: 26-32
  • 70 Alma MH, Nitz S, Kollmannsberger H, Digrak M, Efe FT, Yilmaz N. Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). J Agric Food Chem 2004; 52: 3911-3914
  • 71 Porres-Martínez M, González-Burgos E, Carretero ME, Gómez-Serranillos MP. In vitro neuroprotective potential of the monoterpenes α-pinene and 1, 8-cineole against H2O2-induced oxidative stress in PC12 cells. Z Naturforsch C 2016; 71: 191-199
  • 72 Lee GY, Lee C, Park GH, Jang JH. Amelioration of scopolamine-induced learning and memory impairment by α-pinene in C57BL/6 mice. Evid Based Complement Alternat Med 2017; 2017: 4926815
  • 73 Goudarzi S, Rafieirad M. Evaluating the effect of α-pinene on motor activity, avoidance memory and lipid peroxidation in animal model of Parkinson disease in adult male rats. RJP 2017; 4: 53-63
  • 74 Kasuya H, Okada N, Kubohara M, Satou T, Masuo Y, Koike K. Expression of BDNF and TH mRNA in the brain following inhaled administration of α-pinene. Phytother Res 2015; 29: 43-47
  • 75 Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Attenuation effects of alpha-pinene inhalation on mice with dizocilpine-induced psychiatric-like behaviour. Evid Based Complement Alternat Med 2019; 2019: 2745453
  • 76 Sabogal-Guáqueta AM, Osorio E, Cardona-Gómez GP. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimerʼs mice. Neuropharmacology 2016; 102: 111-120
  • 77 Mehri S, Meshki MA, Hosseinzadeh H. Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem Toxicol 2015; 38: 162-166
  • 78 Park H, Seol GH, Ryu S, Choi IY. Neuroprotective effects of (−)-linalool against oxygen-glucose deprivation-induced neuronal injury. Arch Pharm Res 2016; 39: 555-564
  • 79 Barrera-Sandoval AM, Osorio E, Cardona-Gómez GP. Microglial-targeting induced by intranasal linalool during neurological protection postischemia. Eur J Pharmacol 2019; 857: 172420
  • 80 Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A. Beta-caryophyllene is a dietary cannabinoid. P Natl Acad Sci 2008; 105: 9099-9104
  • 81 Machado KDC, Islam MT, Ali ES, Rouf R, Uddin SJ, Dev S, Shilpi JA, Shill MC, Reza HM, Das AK, Shaw S, Mubarak MS, Mishra SK, Melo-Cavalcante AAC. A systematic review on the neuroprotective perspectives of beta-caryophyllene. Phytother Res 2018; 32: 2376-2388
  • 82 Lou J, Teng Z, Zhang L, Yang J, Ma L, Wang F, Tian X, An R, Yang M, Zhang Q, Xu L, Dong Z. β-Caryophyllene/Hydroxypropyl-β-Cyclodextrin Inclusion Complex Improves Cognitive Deficits in Rats with Vascular Dementia through the Cannabinoid Receptor Type 2 -Mediated Pathway. Front Pharmacol 2017; 8: 2
  • 83 Poddighe L, Carta G, Serra MP, Melis T, Boi M, Lisai S, Murru E, Muredda L, Collu M, Banni S. Acute administration of beta-caryophyllene prevents endocannabinoid system activation during transient common carotid artery occlusion and reperfusion. Lipids Health Dis 2018; 17: 23
  • 84 Cheng Y, Dong Z, Liu S. beta-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 Mice through CB2 receptor activation and the PPARgamma pathway. Pharmacology 2014; 94: 1-12
  • 85 Assis LC, Straliotto MR, Engel D, Hort MA, Dutra RC, de Bem AF. beta-Caryophyllene protects the C6 glioma cells against glutamate-induced excitotoxicity through the Nrf2 pathway. Neuroscience 2014; 279: 220-231
  • 86 Askari VR, Shafiee-Nick R. Promising neuroprotective effects of beta-caryophyllene against LPS-induced oligodendrocyte toxicity: A mechanistic study. Biochem Pharmacol 2019; 159: 154-171
  • 87 Youssef DA, El-Fayoumi HM, Mahmoud MF. Beta-caryophyllene alleviates diet-induced neurobehavioral changes in rats: The role of CB2 and PPAR-gamma receptors. Biomed Pharmacother 2019; 110: 145-154
  • 88 Viveros-Paredes JM, Gonzalez-Castaneda RE, Gertsch J, Chaparro-Huerta V, Lopez-Roa RI, Vazquez-Valls E, Beas-Zarate C, Camins-Espuny A, Flores-Soto ME. Neuroprotective effects of beta-caryophyllene against dopaminergic neuron injury in a murine model of Parkinsonʼs disease induced by MPTP. Pharmaceuticals (Basel) 2017; 10: E60
  • 89 Ojha S, Javed H, Azimullah S, Haque ME. beta-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol Cell Biochem 2016; 418: 59-70
  • 90 Chang HJ, Kim JM, Lee JC, Kim WK, Chun HS. Protective effect of beta-caryophyllene, a natural bicyclic sesquiterpene, against cerebral ischemic injury. J Med Food 2013; 16: 471-480
  • 91 Yang M, Lv Y, Tian X, Lou J, An R, Zhang Q, Li M, Xu L, Dong Z. Neuroprotective effect of β-caryophyllene on cerebral ischemia-reperfusion injury via regulation of necroptotic neuronal death and inflammation: In Vivo and in Vitro . Front Neurosci 2017; 11: 583-583
  • 92 Lou J, Cao G, Li R, Liu J, Dong Z, Xu L. beta-caryophyllene attenuates focal cerebral ischemia-reperfusion injury by Nrf2/HO-1 pathway in rats. Neurochem Res 2016; 41: 1291-1304
  • 93 Chang HJ, Kim HJ, Chun HS. Quantitative structure-activity relationship (QSAR) for neuroprotective activity of terpenoids. Life Sci 2007; 80: 835-841
  • 94 Amhamdi H, Aouinti F, Wathelet JP, Elbachiri A. Chemical composition of the essential oil of Pistacia lentiscus L. from Eastern Morocco. Rec Nat Prod 2009; 3: 90
  • 95 Mahmoudvand H, Kheirandish F, Ghasemi Kia M, Tavakoli Kareshk A, Yarahmadi M. Chemical composition, protoscolicidal effects and acute toxicity of Pistacia atlantica Desf. fruit extract. Nat Prod Res 2016; 30: 1208-1211
  • 96 Ciftci O, Oztanir MN, Cetin A. Neuroprotective effects of β-myrcene following global cerebral ischemia/reperfusion-mediated oxidative and neuronal damage in a C57BL/J6 mouse. Neurochem Res 2014; 39: 1717-1723
  • 97 Tang XP, Guo XH, Geng D, Weng LJ. d-Limonene protects PC12 cells against corticosterone-induced neurotoxicity by activating the AMPK pathway. Environ Toxicol Pharmacol 2019; 70: 103192
  • 98 Bigdeli Y, Asle-Rousta M, Rahnema M. Effects of limonene on chronic restraint stress-induced memory impairment and anxiety in male rats. Neurophysiology 2019; 51: 107-113
  • 99 Wang X, Li G, Shen W. Protective effects of D-Limonene against transient cerebral ischemia in stroke-prone spontaneously hypertensive rats. Exp Ther Med 2018; 15: 699-706
  • 100 Zhou W, Fukumoto S, Yokogoshi H. Components of lemon essential oil attenuate dementia induced by scopolamine. Nutr Neurosci 2009; 12: 57-64
  • 101 Ruszkowski P, Bobkiewicz-Kozlowska T. Natural triterpenoids and their derivatives with pharmacological activity against neurodegenerative disorders. Mini Rev Org Chem 2014; 11: 307-315
  • 102 Yoo KY, Park SY. Terpenoids as potential anti-Alzheimerʼs disease therapeutics. Molecules 2012; 17: 3524-3538
  • 103 Kaliora A, Mylona A, Chiou A, Petsios D, Andrikopoulos N. Detection and identification of simple phenolics in Pistacia lentiscus resin. J Liq Chromatogr Relat Technol 2004; 27: 289-300
  • 104 Noguera-Artiaga L, Pérez-López D, Burgos-Hernández A, Wojdyło A, Carbonell-Barrachina ÁA. Phenolic and triterpenoid composition and inhibition of α-amylase of pistachio kernels (Pistacia vera L.) as affected by rootstock and irrigation treatment. Food Chem 2018; 261: 240-245
  • 105 Ayeleso T, Matumba M, Mukwevho E. Oleanolic acid and its derivatives: biological activities and therapeutic potential in chronic diseases. Molecules 2017; 22: 1915
  • 106 Martín R, Carvalho-Tavares J, Hernández M, Arnes M, Ruiz-Gutierrez V, Nieto ML. Beneficial actions of oleanolic acid in an experimental model of multiple sclerosis: a potential therapeutic role. Biochem Pharmacol 2010; 79: 198-208
  • 107 Han YW, Liu XJ, Zhao Y, Li XM. Role of Oleanolic acid in maintaining BBB integrity by targeting p38MAPK/VEGF/Src signaling pathway in rat model of subarachnoid hemorrhage. Eur J Pharmacol 2018; 839: 12-20
  • 108 Martín R, Hernández M, Córdova C, Nieto ML. Natural triterpenes modulate immune-inflammatory markers of experimental autoimmune encephalomyelitis: therapeutic implications for multiple sclerosis. Br J Pharmacol 2012; 166: 1708-1723
  • 109 Mabandla MV, Nyoka M, Daniels WM. Early use of oleanolic acid provides protection against 6-hydroxydopamine induced dopamine neurodegeneration. Brain Res 2015; 1622: 64-71
  • 110 Msibi ZNP, Mabandla MV. Oleanolic acid mitigates 6-hydroxydopamine neurotoxicity by attenuating intracellular ROS in PC12 cells and striatal microglial activation in rat brains. Front Physiol 2019; 10: 1059
  • 111 Zhang SQ, Lin KL, Law CY, Liu B, Fu XQ, Tse WS, Wong SSM, Sze SCW, Yung KKL. Oleanolic acid enhances neural stem cell migration, proliferation, and differentiation in vitro by inhibiting GSK3β activity. Cell Death Dis 2018; 5: 48
  • 112 Caltana L, Rutolo D, Nieto ML, Brusco A. Further evidence for the neuroprotective role of oleanolic acid in a model of focal brain hypoxia in rats. Neurochem Int 2014; 79: 79-87
  • 113 Zhang L, Xia R, Jia J, Wang L, Li K, Li Y, Zhang J. Oleanolic acid protects against cognitive decline and neuroinflammation-mediated neurotoxicity by blocking secretory phospholipase A2 IIA-activated calcium signals. Mol Immunol 2018; 99: 95-103
  • 114 Cargnin ST, Gnoatto SB. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chem 2017; 220: 477-489
  • 115 Liang W, Zhao X, Feng J, Song F, Pan Y. Ursolic acid attenuates beta-amyloid-induced memory impairment in mice. Arq Neuropsiquiatr 2016; 74: 482-488
  • 116 Heo HJ, Cho HY, Hong B, Kim HK, Heo TR, Kim EK, Kim SK, Kim CJ, Shin DH. Ursolic acid of Origanum majorana L. reduces Abeta-induced oxidative injury. Mol Cells 2002; 13: 5-11
  • 117 Yoon JH, Youn K, Ho CT, Karwe MV, Jeong WS, Jun M. p-Coumaric Acid and Ursolic Acid from Corni fructus attenuated β-Amyloid25–35-Induced Toxicity through Regulation of the NF-κB Signaling Pathway in PC12 cells. J Agric Food Chem 2014; 62: 4911-4916
  • 118 Hong SY, Jeong WS, Jun M. Protective effects of the key compounds isolated from Corni fructus against β-amyloid-induced neurotoxicity in PC12 cells. Molecules 2012; 17: 10831-10845
  • 119 Lu J, Zheng YL, Wu DM, Luo L, Sun DX, Shan Q. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem Pharmacol 2007; 74: 1078-1090
  • 120 Bahrami SA, Bakhtiari N. Ursolic acid regulates aging process through enhancing of metabolic sensor proteins level. Biomed Pharmacother 2016; 82: 8-14
  • 121 Loesche A, Köwitsch A, Lucas SD, Al-Halabi Z, Sippl W, Al-Harrasi A, Csuk R. Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential. Bioorg Chem 2019; 85: 23-32
  • 122 Rai SN, Yadav SK, Singh D, Singh SP. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. J Chem Neuroanat 2016; 71: 41-49
  • 123 Sahu S, Li R, Kadeyala PK, Liu S, Schachner M. The human natural killer-1 (HNK-1) glycan mimetic ursolic acid promotes functional recovery after spinal cord injury in mouse. J Nutr Biochem 2018; 55: 219-228
  • 124 Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, Shan Q. Ursolic acid improves high fat diet-induced cognitive impairments by blocking endoplasmic reticulum stress and IkappaB kinase beta/nuclear factor-kappaB-mediated inflammatory pathways in mice. Brain Behav Immun 2011; 25: 1658-1667
  • 125 Li L, Zhang X, Cui L, Wang L, Liu H, Ji H, Du Y. Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice. Brain Res 2013; 1497: 32-39
  • 126 Ding H, Wang H, Zhu L, Wei W. Ursolic acid ameliorates early brain injury after experimental traumatic brain injury in mice by activating the Nrf2 pathway. Neurochem Res 2017; 42: 337-346
  • 127 Zhang T, Su J, Guo B, Zhu T, Wang K, Li X. Ursolic acid alleviates early brain injury after experimental subarachnoid hemorrhage by suppressing TLR4-mediated inflammatory pathway. Int Immunopharmacol 2014; 23: 585-591
  • 128 Wang Y, He Z, Deng S. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury. Drug Des Devel Ther 2016; 10: 1663-1674
  • 129 Khan I, Karim N, Ahmad W, Abdelhalim A, Chebib M. GABA-A receptor modulation and anticonvulsant, anxiolytic, and antidepressant activities of constituents from Artemisia indica Linn. Evid Based Complement Alternat Med 2016; 2016: 1215393
  • 130 Jeon SJ, Park HJ, Gao Q, Pena IJ, Park SJ, Lee HE, Woo H, Kim HJ, Cheong JH, Hong E, Ryu JH. Ursolic acid enhances pentobarbital-induced sleeping behaviors via GABAergic neurotransmission in mice. Eur J Pharmacol 2015; 762: 443-448
  • 131 Rauf A, Uddin G, Khan A, Siddiqui BS, Arfan M, Dalvandi K, Hadda TB. Pistagremic acid, a novel β-secretase enzyme (BACE1) inhibitor from Pistacia integerrima Stewart. Nat Prod Res 2015; 29: 1735-1738
  • 132 Giner-Larza EM, Máñez S, Giner RM, Recio MC, Prieto JM, Cerdá-Nicolás M, Ríos J. Anti-inflammatory triterpenes from Pistacia terebinthus galls. Planta Med 2002; 68: 311-315
  • 133 Hazan Z, Adamsky K, Lucassen A, Levin LA. A First-in-Human Phase 1 Randomized Single and Multiple Ascending Dose Study of RPh201 in Healthy Volunteers. Clin Pharm Drug Dev DOI: 10.1002/cpdd.720. advance online publication 28.06.2019;
  • 134 Rath EZ, Hazan Z, Adamsky K, Solomon A, Segal ZI, Levin LA. Randomized controlled phase 2a study of RPh201 in previous nonarteritic anterior ischemic optic neuropathy. Neuroophthalmol 2019; 39: 291-298
  • 135 Daglia M, Di Lorenzo A, Nabavi SF, Talas ZS, Nabavi SM. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat!. Curr Pharm Biotechnol 2014; 15: 362-372
  • 136 Shahrzad S, Bitsch I. Determination of gallic acid and its metabolites in human plasma and urine by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 1998; 705: 87-95
  • 137 Yasuda T, Inaba A, Ohmori M, Endo T, Kubo S, Ohsawa K. Urinary metabolites of gallic acid in rats and their radical-scavenging effects on 1, 1-diphenyl-2-picrylhydrazyl radical. J Nat Prod 2000; 63: 1444-1446
  • 138 Yu Z, Song F, Jin YC, Zhang WM, Zhang Y, Liu EJ, Zhou D, Bi LL, Yang Q, Li H. Comparative pharmacokinetics of gallic acid after oral administration of gallic acid monohydrate in normal and isoproterenol-induced myocardial infarcted rats. Front Pharmacol 2018; 9: 328
  • 139 Lu Z, Nie G, Belton PS, Tang H, Zhao B. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 2006; 48: 263-274
  • 140 Szwajgier D, Borowiec K, Pustelniak K. The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients 2017; 9: 477
  • 141 Kim MJ, Seong AR, Yoo JY, Jin CH, Lee YH, Kim YJ, Lee J, Jun WJ, Yoon HG. Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res 2011; 55: 1798-1808
  • 142 Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. Neuroreport 2008; 19: 1329-1333
  • 143 Reznichenko L, Amit T, Zheng H, Avramovich-Tirosh Y, Youdim M, Weinreb O, Mandel S. Reduction of iron-regulated amyloid precursor protein and β-amyloid peptide by (−)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimerʼs disease. J Neurochem 2006; 97: 527-536
  • 144 Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem 2013; 138: 1028-1033
  • 145 Mirshekar MA, Sarkaki A, Farbood Y, Naseri MKG, Badavi M, Mansouri MT, Haghparast A. Neuroprotective effects of gallic acid in a rat model of traumatic brain injury: behavioral, electrophysiological, and molecular studies. Iran J Basic Med Sci 2018; 21: 1056
  • 146 Maya S, Prakash T, Madhu K. Assessment of neuroprotective effects of Gallic acid against glutamate-induced neurotoxicity in primary rat cortex neuronal culture. Neurochem Int 2018; 121: 50-58
  • 147 Pervin M, Unno K, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules (Basel) 2018; 23: 1297
  • 148 Ribeiro GAC, da Rocha CQ, Veloso WB, Fernandes RN, da Silva IS, Tanaka AA. Determination of the catechin contents of bioactive plant extracts using disposable screen-printed carbon electrodes in a batch injection analysis (BIA) system. Microchem J 2019; 146: 1249-1254
  • 149 Bansal S, Vyas S, Bhattacharya S, Sharma M. Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat Prod Rep 2013; 30: 1438-1454
  • 150 Farzaei MH, Bahramsoltani R, Abbasabadi Z, Braidy N, Nabavi SM. Role of green tea catechins in prevention of age-related cognitive decline: Pharmacological targets and clinical perspective. J Cell Physiol 2019; 234: 2447-2459
  • 151 Farkhondeh T, Yazdi HS, Samarghandian S. The protective effects of green tea catechins in the management of neurodegenerative diseases: A review. Curr Drug Discov Technol 2019; 16: 57-65
  • 152 Cheruku SP, Ramalingayya GV, Chamallamudi MR, Biswas S, Nandakumar K, Nampoothiri M, Gourishetti K, Kumar N. Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in in vitro and episodic memory deficit in in vivo in Wistar rats. Cytotechnology 2018; 70: 245-259
  • 153 Jiang Z, Zhang J, Cai Y, Huang J, You L. Catechin attenuates traumatic brain injury-induced blood-brain barrier damage and improves longer-term neurological outcomes in rats. Exp Physiol 2017; 102: 1269-1277
  • 154 Ide K, Matsuoka N, Yamada H, Furushima D, Kawakami K. Effects of tea catechins on Alzheimerʼs disease: recent updates and perspectives. Molecules 2018; 23: E2357
  • 155 Baluchnejadmojarad T, Roghani M. Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress. Behav Brain Res 2011; 224: 305-310
  • 156 Biasibetti R, Tramontina AC, Costa AP, Dutra MF, Quincozes-Santos A, Nardin P, Bernardi CL, Wartchow KM, Lunardi PS, Gonçalves CA. Green tea (−) epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res 2013; 236: 186-193
  • 157 Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001; 78: 1073-1082
  • 158 Tarozzi A, Morroni F, Merlicco A, Bolondi C, Teti G, Falconi M, Cantelli-Forti G, Hrelia P. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25–35) oligomer-induced toxicity. Neurosci Lett 2010; 473: 72-76
  • 159 Barreca D, Bellocco E, DʼOnofrio G, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM. Neuroprotective effects of quercetin: from chemistry to medicine. CNS Neurol Disord Drug Targets 2016; 15: 964-975
  • 160 Amanzadeh E, Esmaeili A, Rahgozar S, Nourbakhshnia M. Application of quercetin in neurological disorders: from nutrition to nanomedicine. Rev Neuroscience 2019; 30: 555-572
  • 161 Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid Med Cell Longev 2016; 2016: 2986796
  • 162 Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimerʼs disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimerʼs disease model mice. Neuropharmacology 2015; 93: 134-145
  • 163 Abdalla FH, Schmatz R, Cardoso AM, Carvalho FB, Baldissarelli J, de Oliveira JS, Rosa MM, Nunes MAG, Rubin MA, da Cruz IB. Quercetin protects the impairment of memory and anxiogenic-like behavior in rats exposed to cadmium: Possible involvement of the acetylcholinesterase and Na+, K+-ATPase activities. Physiol Behav 2014; 135: 152-167
  • 164 Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin in primary neurons against Aβ(1–42): relevance to Alzheimerʼs disease. J Nutr Biochem 2009; 20: 269-275
  • 165 Farzaei MH, Tewari D, Momtaz S, Argüelles S, Nabavi SM. Targeting ERK signaling pathway by polyphenols as novel therapeutic strategy for neurodegeneration. Chem Toxicol 2018; 120: 183-195
  • 166 Tchantchou F, Lacor PN, Cao Z, Lao L, Hou Y, Cui C, Klein WL, Luo Y. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis 2009; 18: 787-798
  • 167 Shahpiri Z, Bahramsoltani R, Farzaei MH, Farzaei F, Rahimi R. Phytochemicals as future drugs for Parkinsonʼs disease: a comprehensive review. Rev Neuroscience 2016; 27: 651-668
  • 168 Singh A, Naidu PS, Kulkarni SK. Quercetin potentiates L-Dopa reversal of drug-induced catalepsy in rats: possible COMT/MAO inhibition. Pharmacology 2003; 68: 81-88
  • 169 Bournival J, Quessy P, Martinoli MG. Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol 2009; 29: 1169-1180
  • 170 Karuppagounder S, Madathil S, Pandey M, Haobam R, Rajamma U, Mohanakumar K. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinsonʼs disease in rats. Neuroscience 2013; 236: 136-148
  • 171 Kale A, Pişkin Ö, Baş Y, Aydın BG, Can M, Elmas Ö, Büyükuysal Ç. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats. J Radiat Res 2018; 59: 404-410
  • 172 Lapi D, Vagnani S, Pignataro G, Esposito E, Paterni M, Colantuoni A. Protective effects of quercetin on rat pial microvascular changes during transient bilateral common carotid artery occlusion and reperfusion. Front Physiol 2012; 3: 32
  • 173 Zaplatic E, Bule M, Shah SZA, Uddin MS, Niaz K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimerʼs disease. Life Sci 2019; 224: 109-119
  • 174 Furtado NAJC, Pirson L, Edelberg H, Miranda LM, Loira-Pastoriza C, Preat V, Larondelle Y, André CM. Pentacyclic triterpene bioavailability: an overview of in vitro and in vivo studies. Molecules 2017; 22: 400
  • 175 Gangwal A. Neuropharmacological effects of triterpenoids. Phytopharmacol 2013; 4: 354-372
  • 176 Kohlert C, Van Rensen I, März R, Schindler G, Graefe E, Veit M. Bioavailability and pharmacokinetics of natural volatile terpenes in animals and humans. Planta Med 2000; 66: 495-505
  • 177 Satou T, Hayakawa M, Kasuya H, Masuo Y, Koike K. Mouse brain concentrations of α-pinene, limonene, linalool, and 1, 8-cineole following inhalation. Flavour Fragr J 2017; 32: 36-39
  • 178 Santos PS, Oliveira TC, Júnior LMR, Figueiras A, Nunes LCC. β-caryophyllene delivery systems: enhancing the oral pharmacokinetic and stability. Curr Pharm Des 2018; 24: 3440-3453
  • 179 Sterk V, Büchele B, Simmet T. Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers. Planta Med 2004; 70: 1155-1160
  • 180 Jinhua W. Ursolic acid: Pharmacokinetics process in vitro and in vivo, a mini review. Arch Pharm 2019; 352: e1800222
  • 181 Figueira I, Garcia G, Pimpão RC, Terrasso A, Costa I, Almeida A, Tavares L, Pais T, Pinto P, Ventura M. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep 2017; 7: 11456
  • 182 Ferruzzi MG, Lobo JK, Janle EM, Cooper B, Simon JE, Wu QL, Welch C, Ho L, Weaver C, Pasinetti GM. Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats: implications for treatment in Alzheimerʼs disease. J Alzheimers Dis 2009; 18: 113-124
  • 183 Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005; 81: 230S-242S
  • 184 Viskupičová J, Ondrejovič M, Šturdík E. Bioavailability and metabolism of flavonoids. J Food Nutr Res 2008; 4: 151-162
  • 185 Crozier A, Del Rio D, Clifford MN. Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med 2010; 31: 446-467
  • 186 Renaud J, Martinoli MG. Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int J Mol Sci 2019; 8: E1883
  • 187 Ishisaka A, Ichikawa S, Sakakibara H, Piskula MK, Nakamura T, Kato Y, Ito M, Miyamoto K, Tsuji A, Kawai Y. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic Biol Med 2011; 51: 1329-1336
  • 188 Dajas F, Abin-Carriquiry JA, Arredondo F, Blasina F, Echeverry C, Martínez M, Rivera F, Vaamonde L. Quercetin in brain diseases: Potential and limits. Neurochem Int 2015; 89: 140-148
  • 189 Mazza G, Miniati E. Anthocyanins in fruits, vegetables, and grains. Boca Raton: CRC Press; 1993
  • 190 Manolescu BN, Oprea E, Mititelu M, Ruta LL, Farcasanu IC. Dietary anthocyanins and stroke: A review of pharmacokinetic and pharmacodynamic studies. Nutrient 2019; 11: 1479
  • 191 Talavera S, Felgines C, Texier O, Besson C, Manach C, Lamaison JL, Remesy C. Anthocyanins are efficiently absorbed from the small intestine in rats. J Nutr 2004; 134: 2275-2279
  • 192 Kalt W, Liu Y, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA. Anthocyanin metabolites are abundant and persistent in human urine. J Agric Food Chem 2014; 62: 3926-3934
  • 193 Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr 2013; 97: 995-1003
  • 194 Hosseinzadeh H, Behravan E, Soleimani MM. Antinociceptive and anti-inflammatory effects of Pistacia vera leaf extract in mice. Iran J Pharm Res 2011; 10: 821
  • 195 Hajjaj G, Chakour R, Bahlouli A, Tajani M, Cherrah Y, Zellou A. Evaluation of CNS activity and anti-inflammatory effect of Pistacia atlantica desf. essential oil from Morocco. Pharm Chem J 2018; 5: 86-94
  • 196 Shirole RL, Shirole NL, Saraf MN. In vitro relaxant and spasmolytic effects of essential oil of Pistacia integerrima Stewart ex Brandis Galls. J Ethnopharmacol 2015; 168: 61-65
  • 197 Türkoğlu S, Çelik S, Keser S, Türkoğlu İ, Yilmaz Ö. The effect of Pistacia terebinthus extract on lipid peroxidation, glutathione, protein, and some enzyme activities in tissues of rats undergoing oxidative stress. Turk J Zool 2017; 41: 82-88
  • 198 Satou T, Kasuya H, Maeda K, Koike K. Daily inhalation of α-pinene in mice: effects on behavior and organ accumulation. Phytother Res 2014; 28: 1284-1287
  • 199 El Alaoui C, Chemin J, Fechtali T, Lory P. Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts. PLoS One 2017; 12: e0186864
  • 200 Askari VR, Shafiee-Nick R. Promising neuroprotective effects of β-caryophyllene against LPS-induced oligodendrocyte toxicity: A mechanistic study. Biochem Pharmacol 2019; 159: 154-171
  • 201 Ojha S, Javed H, Azimullah S, Haque ME. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol Cell Biochem 2016; 418: 59-70
  • 202 Liu H, Song Z, Liao D, Zhang T, Liu F, Zhuang K, Luo K, Yang L. Neuroprotective effects of trans-caryophyllene against kainic acid induced seizure activity and oxidative stress in mice. Neurochem Res 2015; 40: 118-123
  • 203 de Oliveira CC, de Oliveira CV, Grigoletto J, Ribeiro LR, Funck VR, Grauncke ACB, de Souza TL, Souto NS, Furian AF, Menezes IRA. Anticonvulsant activity of β-caryophyllene against pentylenetetrazol-induced seizures. Epilepsy Behav 2016; 56: 26-31
  • 204 Lv C, Hong T, Yang Z, Zhang Y, Wang L, Dong M, Zhao J, Mu J, Meng Y. Effect of quercetin in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of Parkinsonʼs disease. Evid Based Complement Alternat Med 2012; 2012: 928643