CC BY-NC-ND 4.0 · Planta Med 2020; 86(01): 10-18
DOI: 10.1055/a-1041-3406
Ethics
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Scientistsʼ Warning on Climate Change and Medicinal Plants

Wendy L. Applequist
1   William L. Brown Center, Missouri Botanical Garden, St. Louis, MO, U. S. A.
,
Josef A. Brinckmann
2   Traditional Medicinals, Sebastopol, CA, U. S. A.
,
Anthony B. Cunningham
3   School of Veterinary and Life Sciences, Murdoch University, Murdoch WA, Australia
,
Robbie E. Hart
1   William L. Brown Center, Missouri Botanical Garden, St. Louis, MO, U. S. A.
,
Michael Heinrich
4   Pharmacognosy and Phytotherapy, UCL School of Pharmacy, University of London, London, U. K.
,
David R. Katerere
5   Department of Pharmaceutical Science, Tshwane University of Technology, Pretoria, R. S. A.
,
Tinde van Andel
6   Naturalis Biodiversity Center, Leiden, The Netherlands; Biosystematics Group, Wageningen University, The Netherlands
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 18. September 2019
revised 28. Oktober 2019

accepted 30. Oktober 2019

Publikationsdatum:
15. November 2019 (online)

Abstract

The recent publication of a World Scientistsʼ Warning to Humanity highlighted the fact that climate change, absent strenuous mitigation or adaptation efforts, will have profound negative effects for humanity and other species, affecting numerous aspects of life. In this paper, we call attention to one of these aspects, the effects of climate change on medicinal plants. These plants provide many benefits for human health, particularly in communities where Western medicine is unavailable. As for other species, their populations may be threatened by changing temperature and precipitation regimes, disruption of commensal relationships, and increases in pests and pathogens, combined with anthropogenic habitat fragmentation that impedes migration. Additionally, medicinal species are often harvested unsustainably, and this combination of pressures may push many populations to extinction. A second issue is that some species may respond to increased environmental stresses not only with declines in biomass production but with changes in chemical content, potentially affecting quality or even safety of medicinal products. We therefore recommend actions including conservation and local cultivation of valued plants, sustainability training for harvesters and certification of commercial material, preservation of traditional knowledge, and programs to monitor raw material quality in addition to, of course, efforts to mitigate climate change.

 
  • References

  • 1 Union of Concerned Scientists. World Scientistsʼ Warning to Humanity. Cambridge: Union of Concerned Scientists; 1992. Available at: https://www.ucsusa.org/about/1992-world-scientists.html#.XD5D4ml7ncs Accessed November 12, 2019
  • 2 Ripple WJ, Wolf C, Newsome TM, Galetti M, Alamgir M, Crist E, Mahmoud MI, Laurance WF. and 15 364 scientist signatories from 184 countries, . World Scientistsʼ warning to humanity: a second notice. Bioscience 2017; 67: 1026-1028
  • 3 Finlayson CM, Davies GT, Moomaw WR, Chmura GL, Natali SM, Perry JE, Roulet N, Sutton-Grier AE. The second warning to humanity – providing a context for wetland management and policy. Wetlands 2019; 39: 1-5
  • 4 Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Welch DBM, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, van Oppen MJH, Weaver SC, Webb EA, Webster NS. Scientistsʼ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 2019; 17: 569-586
  • 5 Coogan SCP, Robinne FN, Jain P, Flannigan MD. Scientistsʼ warning on wildfire – a Canadian perspective. Can J For Res 2019; 49: 1015-1023
  • 6 World Health Organization. WHO traditional Medicine Strategy 2002–2005. Geneva: World Health Organization; 2002
  • 7 Robinson MM, Zhang X. The World Medicines Situation 2011. Traditional Medicines: global Situation, Issues and Challenges. Geneva: World Health Organization; 2011
  • 8 Heinrich M, Jaeger AK. eds. Ethnopharmacology. Chichester: Wiley; 2015
  • 9 Katerere DR, Luseba D. Ethnoveterinary botanical Medicine. Herbal Medicines for Animal Health. Boca Raton: CRC Press; 2010
  • 10 Brinckmann JA. Sustainable Sourcing: Markets for certified Chinese medicinal and aromatic Plants. Geneva: International Trade Centre; 2016: 22
  • 11 Gairola S, Shariff NM, Bhatt A, Kala CP. Influence of climate change on production of secondary chemicals in high altitude medicinal plants: issues needs immediate attention. J Med Plants Res 2010; 4: 1825-1829
  • 12 Humphreys AM, Govaerts R, Ficinski SZ, Lughadh EN, Vorontsova MS. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nature Ecol Evol 2019; 3: 1043-1047
  • 13 Skole D, Tucker C. Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 1993; 260: 1905-1910
  • 14 Riitters KH, Wickham JD, OʼNeill RV, Jones KB, Smith ER, Coulston JW, Wade TG, Smith JH. Fragmentation of continental United States forests. Ecosystems 2002; 5: 815-822
  • 15 Harper GJ, Steininger MK, Tucker CJ, Juhn D, Hawkins F. Fifty years of deforestation and forest fragmentation in Madagascar. Environ Conserv 2007; 34: 325-333
  • 16 Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR. Habitat fragmentation and its lasting impact on Earthʼs ecosystems. Sci Adv 2015; 1: e1500052
  • 17 Matthies D, Bräuer I, Maibom W, Tscharntke T. Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 2004; 105: 481-488
  • 18 Brasier CM. Rapid evolution of introduced plant pathogens via interspecific hybridization: Hybridization is leading to rapid evolution of Dutch elm disease and other fungal plant pathogens. Bioscience 2001; 51: 123-133
  • 19 Siegert NW, McCullough DG, Liebhold AM, Telewski FW. Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in North America. Divers Distrib 2014; 20: 847-858
  • 20 Callen ST, Miller AJ. Signatures of niche conservatism and niche shift in the North American kudzu (Pueraria montana) invasion. Divers Distrib 2015; 21: 853-863
  • 21 McGraw JB, Furedi MA. Deer browsing and population viability of a forest understory plant. Science 2005; 307: 920-922
  • 22 McElhaney JE, Simor AE, McNeil S, Predy GN. Efficacy and safety of CVT-E002, a proprietary extract of Panax quinquefolius in the prevention of respiratory infections in influenza-vaccinated community-dwelling adults: a multicenter, randomized, double-blinded, and placebo-controlled trial. Influenza Res Treat 2011; 2011: 759051
  • 23 Seida JK, Durec T, Kuhle S. North American (Panax quinquefolius) and Asian ginseng (Panax ginseng) preparations for prevention of the common cold in healthy adults: A systematic review. Evid Based Complement Altern Med 2011; 2011: 282151
  • 24 Barton DL, Liu H, Dakhil SR, Linquist B, Sloan JA, Nichols CR, McGinn TW, Stella PJ, Seeger GR, Sood A, Loprinzi CL. Wisconsin Ginseng (Panax quinquefolius) to improve cancer-related fatigue: a randomized, double-blind trial, N07C2. J Natl Cancer Inst 2013; 105: 1230-1238
  • 25 Mucalo I, Jovanovski E, Rahelić D, Božikov V, Romić Z, Vuksan V. Effect of American ginseng (Panax quinquefolius L.) on arterial stiffness in subjects with type-2 diabetes and concomitant hypertension. J Ethnopharmacol 2013; 150: 148-153
  • 26 McGraw JB. Evidence for decline in stature of American ginseng plants from herbarium specimens. Biol Conserv 2001; 98: 25-32
  • 27 Case MA, Flinn KM, Jancaitis J, Alley A, Paxton A. Declining abundance of American ginseng (Panax quinquefolius L.) documented by herbarium specimens. Biol Conserv 2007; 134: 22-30
  • 28 Souther S, McGraw JB. Synergistic effects of climate change and harvest on extinction risk of American ginseng. Ecol Appl 2014; 24: 1463-1477
  • 29 Mulligan MR, Gorchov DL. Population loss of goldenseal, Hydrastis canadensis L. (Ranunculaceae), in Ohio. J Torrey Bot Soc 2004; 131: 305-310
  • 30 Law W, Salick J. Human-induced dwarfing of Himalayan snow lotus, Saussurea laniceps (Asteraceae). Proc Natl Acad Sci U S A 2005; 102: 10218-10220
  • 31 Oliver L. Hydrastis canadensis. The IUCN Red List of Threatened Species 2017: e.T44340011A44340071. Available at: http://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T44340011A44340071.en Accessed November 12, 2019
  • 32 Parejko K. Pliny the Elderʼs silphium: first recorded species extinction. Conserv Biol 2003; 17: 925-927
  • 33 Kiehn M. Silphion revisited. Med Plant Conserv 2007; 13: 4-8
  • 34 Shafer SL, Bartlein PJ, Thompson RS. Potential changes in the distributions of western North American tree and shrub taxa under future climate scenarios. Ecosystems 2001; 4: 200-215
  • 35 Pompe S, Hanspach J, Badeck F, Klotz S, Thuiller W, Kühn I. Climate and land use change impacts on plant distributions in Germany. Biol Lett 2008; 4: 564-567
  • 36 Guo Y, Wei H, Lu C, Gao B, Gu W. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ 2016; 4: e2554
  • 37 You J, Qin X, Ranjitkar S, Lougheed SC, Wang M, Zhou W, Ouyang D, Zhou Y, Xu J, Zhang W, Wang Y, Yang J, Song Z. Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci Rep 2018; 8: 5879
  • 38 Zhao Q, Li R, Gao Y, Yao Q, Guo X, Wang W. Modeling impacts of climate change on the geographic distribution of medicinal plant Fritillaria cirrhosa D. Don. Plant Biosyst 2018; 152: 349-355
  • 39 Abdelaal M, Fois M, Fenu G, Bacchetta G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecol Inform 2019; 50: 68-75
  • 40 Lamprecht A, Semenchuk PR, Steinbauer K, Winkler M, Pauli H. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytol 2018; 220: 447-459
  • 41 Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD. Rapid range shifts of species associated with high levels of climate warming. Science 2011; 333: 1024-1026
  • 42 Lenoir J, Svenning JC. Latitudinal and elevational Range Shifts under contemporary Climate Change. In: Levin S. ed. Encyclopedia of Biodiversity. 2nd edition. Amsterdam: Elsevier; 2013: 599-611
  • 43 Kudo G, Ida TY. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 2013; 94: 2311-2320
  • 44 Phondani PC, Bhatt ID, Negi VS, Kothyari BP, Bhatt A, Maikhuri RK. Promoting medicinal plants cultivation as a tool for biodiversity conservation and livelihood enhancement in Indian Himalaya. J Asia-Pac Biodiv 2016; 9: 39-46
  • 45 Kharouba HM, Ehrlén J, Gelman A, Bolmgren K, Allen JM, Travers SE, Wolkovich EM. Global shifts in the phenological synchrony of species interactions over recent decades. Proc Natl Acad Sci U S A 2018; 115: 5211-5216
  • 46 Sánchez-Bayo F, Wyckhuys KAG. Worldwide decline of the entomofauna: A review of its drivers. Biol Conserv 2019; 232: 8-27
  • 47 Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Negrón JF, Seybold SJ. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 2010; 60: 602-613
  • 48 Amberson JT, Keville MP, Nelson CR. Effects of disturbance on tree community dynamics in whitebark pine (Pinus albicaulis Engelm.) ecosystems. Forests 2018; 9: 566
  • 49 Williams DW, Liebhold AM. Climate change and the outbreak ranges of two North American bark beetles. Agric Forest Entomol 2002; 4: 87-99
  • 50 Bergot M, Cloppet E, Pérarnaud V, Déqué M, Marçais B, Desprez-Loustau ML. Simulation of potential range expansion of oak disease caused by Phytophtora cinnamomi under climate change. Global Change Biol 2004; 10: 1539-1552
  • 51 Bosso L, Di Febbraro M, Cristinzio G, Zoina A, Russo D. Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biol Invasions 2016; 18: 1759-1768
  • 52 Cudmore TJ, Björklund N, Carroll AL, Lindgren BS. Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naïve host tree populations. J Appl Ecol 2010; 47: 1036-1043
  • 53 Chertov O, Bhatti JS, Komarov A, Mikhailov A, Bykhovets S. Influence of climate change, fire and harvest on the carbon dynamics of black spruce in Central Canada. Forest Ecol Manage 2009; 257: 941-950
  • 54 Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET. Risk of natural disturbances makes future contribution of Canadaʼs forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci U S A 2008; 105: 1551-1555
  • 55 Nobre CA, Borma LDS. ‘Tipping points’ for the Amazon forest. Curr Opin Environ Sust 2009; 1: 28-36
  • 56 Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manage 2010; 259: 660-684
  • 57 Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 2015; 349: 528-532
  • 58 Zhang JZ, Zhu RW, Zhong DL, Zhang JQ. Nunataks or massif de refuge? A phylogeographic study of Rhodiola crenulata (Crassulaceae) on the worldʼs highest sky islands. BMC Evol Biol 2018; 18: 154
  • 59 Khanum R, Mumtaz AS, Kumar S. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol 2013; 49: 23-31
  • 60 Cavaliere C. The effects of climate change on medicinal and aromatic plants. HerbalGram 2008; 81: 44-57
  • 61 Turner NJ, Clifton H. “Itʼs so different today”: Climate change and indigenous lifeways in British Columbia, Canada. Global Environ Change 2009; 19: 180-190
  • 62 Ruelle ML, Kassam KAS. Diversity of plant knowledge as an adaptive asset: a case study with Standing Rock elders. Econ Bot 2011; 65: 295-307
  • 63 Grabherr G. Biodiversity in the high ranges of the Alps: ethnobotanical and climate change perspectives. Global Environ Change 2009; 19: 167-172
  • 64 Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP. Exposure of global mountain systems to climate warming during the 21st Century. Global Environ Change 2007; 17: 420-428
  • 65 Salick J, Fang Z, Byg A. Eastern Himalayan alpine plant ecology, Tibetan ethnobotany, and climate change. Global Environ Change 2009; 19: 147-155
  • 66 Salick J, Ghimire SK, Fang Z, Dema S, Konchar KM. Himalayan alpine vegetation, climate change and mitigation. J Ethnobiol 2014; 34: 276-293
  • 67 Brandt JS, Haynes MA, Kuemmerle T, Waller DM, Radeloff VC. Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biol Conserv 2013; 158: 116-127
  • 68 Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. The velocity of climate change. Nature 2009; 462: 1052-1055
  • 69 Huang J, Wang P, Niu Y, Yu H, Ma F, Xiao G, Xu X. Changes in C : N : P stoichiometry modify N and P conservation strategies of a desert steppe species Glycyrrhiza uralensis . Sci Rep 2018; 8: 12668
  • 70 Zhang JT, Xu B, Li M. Diversity of communities dominated by Glycyrrhiza uralensis, an endangered medicinal plant species, along a precipitation gradient in China. Bot Stud 2011; 52: 493-501
  • 71 Brinckmann JA. Geographical indications for medicinal plants: globalization, climate change, quality and market implications for geo-authentic botanicals. World J Tradit Chin Med 2015; 1: 16-23
  • 72 Chen KZ, Song H, Chen R. Licorice Industry in China: Implications for licorice Producers in Uzbekistan. Beijing: International Food Policy Research Institute; 2014
  • 73 Ogbazghi W, Rijkers AJM, Wessel M, Bongers FJJM. The distribution of the frankincense tree Boswellia papyrifera in Eritrea: the role of environment and land use. J Biogeogr 2006; 33: 524-535
  • 74 Tolera M, Sass-Klaassen U, Eshete A, Bongers F, Sterck FJ. Frankincense tree recruitment failed over the past half century. Forest Ecol Manage 2013; 304: 65-72
  • 75 Bongers F, Groenendijk P, Bekele T, Birhane E, Damtew A, Decuyper M, Eshete A, Gezahgne A, Girma A, Khamis MA, Lemenih M, Mengistu T, Ogbazghi W, Sass-Klaassen U, Tadesse W, Teshome M, Tolera M, Sterck FJ, Zuidema PA. Frankincense in peril. Nat Sustain 2019; 2: 602-610
  • 76 Groenendijk P, Eshete A, Sterck FJ, Zuidema PA, Bongers F. Limitations to sustainable frankincense production: blocked regeneration, high adult mortality and declining populations. J Appl Ecol 2012; 49: 164-173
  • 77 Lemenih M, Arts B, Wiersum K, Bongers F. Modelling the future of Boswellia papyrifera population and its frankincense production. J Arid Environ 2014; 105: 33-40
  • 78 Govender N, Trollope WS, Van Wilgen BW. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J Appl Ecol 2006; 43: 748-758
  • 79 Rodríguez MA, Angueyra A, Cleef AM, van Andel TR. Ethnobotany of the Sierra Nevada del Cocuy-Güicán: climate change and conservation strategies in the Colombian Andes. J Ethnobiol Ethnomed 2018; 14: 34
  • 80 De Cauwer V, Knox N, Kobue-Lekalake R, Lepetu JP, Ompelege M, Naidoo S, Nott A, Parduhn D, Sichone P, Tshwenyane S, Elizabeth Y, Revermann R. Woodland Resources and Management in southern Africa. In: Revermann R, Krewenka KM, Schmiedel U, Olwoch JM, Helmschrot J, Jürgens N. eds. Climate Change and adaptive Land Management in southern Africa – Assessments, Changes, Challenges, and Solutions. Göttingen & Windhoek: Klaus Hess Publishers; 2018: 296-308
  • 81 De Cauwer V, Muys B, Revermann R, Trabucco A. Potential, realised, future distribution and environmental suitability for Pterocarpus angolensis DC in southern Africa. Forest Ecol Manage 2014; 315: 211-226
  • 82 Mehl JW, Slippers B, Roux J, Wingfield MJ. Botryosphaeriaceae associated with Pterocarpus angolensis (kiaat) in South Africa. Mycologia 2011; 103: 534-553
  • 83 Schmidhuber J, Tubiello FN. Global food security under climate change. Proc Natl Acad Sci U S A 2007; 104: 19703-19708
  • 84 IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, and Meyer LA, editors]. Geneva: IPCC; 2014
  • 85 Ren Z, Wang D, Ma A, Hwang J, Bennett A, Sturrock HJW, Fan J, Zhang W, Yang D, Feng X, Xia Z, Zhou XN, Wang J. Predicting malaria vector distribution under climate change scenarios in China: Challenges for malaria elimination. Sci Rep 2016; 6: 20604
  • 86 Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P. Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann Allergy Asthma Immunol 2002; 8: 279-282
  • 87 Chapman DS, Makra L, Albertini R, Bonini M, Páldy A, Rodinkova V, Šikoparija B, Weryszko-Chmielewska E, Bullock JM. Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion. Global Change Biol 2016; 22: 3067-3079
  • 88 Frei T. The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grass. Grana 1998; 37: 172-179
  • 89 Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KC, Bucher E, Brighetti MA, Damialis A, Detandt M, Galán C, Gehrig R, Grewling L, Gutiérrez Bustillo AM, Hallsdóttir M, Kockhans-Bieda MC, De Linares C, Myszkowska D, Pàldy A, Sánchez A, Smith M, Thibaudon M, Travaglini A, Uruska A, Valencia-Barrera RM, Vokou D, Wachter R, de Weger LA, Menzel A. Changes to airborne pollen counts across Europe. PLoS One 2012; 7: e34076
  • 90 Zhang Y, Bielory L, Georgopoulos PG. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in US. Int J Biometeorol 2014; 58: 909-919
  • 91 McLachlan JS, Hellmann JJ, Schwartz MW. A framework for debate of assisted migration in an era of climate change. Conserv Biol 2007; 21: 297-302
  • 92 Williams MI, Dumroese RK. Preparing for climate change: forestry and assisted migration. J Forest 2013; 111: 287-297
  • 93 Welch RM, Graham RD. Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 2004; 55: 353-364
  • 94 Davis DR. Declining fruit and vegetable nutrient composition: What is the evidence?. HortScience 2009; 44: 15-19
  • 95 Bøhn T, Cuhra M, Traavik T, Sanden M, Fagan J, Primicerio R. Compositional differences in soybeans on the market: glyphosate accumulates in Roundup Ready GM soybeans. Food Chem 2014; 153: 207-215
  • 96 Figàs MR, Prohens J, Raigón MD, Fita A, Garcia-Martinez MD, Casanova C, Borràs D, Plazas M, Andújar I, Soler S. Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chem 2015; 187: 517-524
  • 97 Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 2015; 5: 424-430
  • 98 Turner NJ, Deur D, Mellott CR. “Up on the mountain”: Ethnobotanical importance of montane sites in Pacific coastal North America. J Ethnobiol 2011; 31: 4-43
  • 99 Nchabeleng L, Mudau FN, Mariga IK. Effects of chemical composition of wild bush tea (Ahtrixia phylicoides DC.) growing at locations differing in altitude, climate and edaphic factors. Med Plants Res 2012; 6: 1662-1666
  • 100 Ganzera M, Guggenberger M, Stuppner H, Zidorn C. Altitudinal variation of secondary metabolite profiles in flowering heads of Matricaria chamomilla cv. BONA. Planta Med 2008; 74: 453-457
  • 101 Spitaler R, Winkler A, Lins I, Yanar S, Stuppner H, Zidorn C. Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. ARBO: a 3-year comparison. J Chem Ecol 2008; 34: 369-375
  • 102 Albert A, Sareedenchai V, Heller W, Seidlitz HK, Zidorn C. Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO. Oecologia 2009; 160: 1-8
  • 103 Selmar D, Kleinwächter M. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crops Prod 2013; 42: 558-566
  • 104 Al-Gabbies A, Kleinwächter M, Selmar D. Influencing the contents of secondary metabolites in spice and medicinal plants by deliberately applying drought stress during their cultivation. Jordan J Biol Sci 2015; 8: 1-10
  • 105 Maranz S, Wiesman Z. Influence of climate on the tocopherol content of shea butter. J Agric Food Chem 2004; 52: 2934-2937
  • 106 Chung IM, Kim JJ, Lim JD, Yu CY, Kim SH, Hahn SJ. Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environ Exp Bot 2006; 56: 44-53
  • 107 Jochum GM, Mudge KW, Thomas RB. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). Am J Bot 2007; 94: 819-826
  • 108 Nowak M, Manderscheid R, Weigel JJ, Kleinwächter M, Selmar D. Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. J Appl Bot Food Qual 2010; 83: 133-136
  • 109 Ghasemzadeh A, Jaafar HZE, Rahmat A. Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe) varieties. Molecules 2010; 15: 7907-7922
  • 110 Zhu C, Zeng Q, McMichael A, Ebi KL, Ni K, Khan AS, Zhu J, Liu G, Zhang X, Cheng L, Ziska LH. Historical and experimental evidence for enhanced concentration of artemisinin, a global anti-malarial treatment, with recent and projected increases in atmospheric carbon dioxide. Clim Change 2015; 132: 295-306
  • 111 Briske DD, Camp BJ. Water stress increases alkaloid concentrations in threadleaf groundsel (Senecio longilobus). Weed Sci 1982; 30: 106-108
  • 112 Kirk H, Vrieling K, van der Meijden E, Klinkhamer PGL. Species by environment interactions affect pyrrolizidine alkaloid expression in Senecio jacobaea, Senecio aquaticus, and their hybrids. J Chem Ecol 2010; 36: 378-387
  • 113 Caldwell CR, Britz SJ, Mirecki RM. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L) Merrill] grown in controlled environments. J Agric Food Chem 2005; 53: 1125-1129
  • 114 Canvin DT. The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops. Can J Bot 1965; 43: 63-69
  • 115 Thomas JMG, Boote KJ, Allen jr. LH, Gallo-Meagher M, Davis JM. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci 2003; 43: 1548-1557
  • 116 Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med 2010; 7: e1000252
  • 117 Dawczynski C, Kleber ME, März W, Jahreis G, Lorkowski S. Saturated fatty acids are not off the hook. Nutr Metab Cardiovasc Dis 2015; 25: 1071-1078
  • 118 Wang Q, Afshin A, Yakoob MY, Singh GM, Rehm CD, Khatibzadeh S, Micha R, Shi P, Mozaffarian D. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Impact of nonoptimal intakes of saturated, polyunsaturated, and trans fat on global burdens of coronary heart disease. J Am Heart Assoc 2016; 5: e002891
  • 119 Chakraborty S, Newton AC. Climate change, plant diseases and food security: an overview. Plant Pathol 2011; 60: 2-14
  • 120 Magan N, Medina A, Aldred D. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol 2011; 60: 150-163
  • 121 Bebber DP, Ramotowski MAT, Gurr SJ. Crop pests and pathogens move polewards in a warming world. Nat Clim Chang 2013; 3: 985-988
  • 122 Van der Fels-Klerx HJ, Liu C, Battilani P. Modelling climate change impacts on mycotoxin contamination. World Mycotoxin J 2016; 9: 717-726