Klin Monbl Augenheilkd 2020; 237(04): 464-468
DOI: 10.1055/a-1085-9250
Klinische Studie
Georg Thieme Verlag KG Stuttgart · New York

Analysis of Retinal Vessel Pulsations with Electrocardiographic Gating

Analyse der Gefäßpulsationen in der Netzhaut mittels EKG-Verankerung
Olivia Bollinger
Ophthalmology Department of the University Hospital Basel, Basel, Switzerland
,
Yasemin Saruhan
Ophthalmology Department of the University Hospital Basel, Basel, Switzerland
,
Konstantin Gugleta
Ophthalmology Department of the University Hospital Basel, Basel, Switzerland
› Author Affiliations
Further Information

Publication History

received 15 September 2019

accepted 26 November 2019

Publication Date:
04 March 2020 (online)

Abstract

Purpose The origin of retinal venous pulsations has been a matter of debate for some time. One classical explanation to the origin of these pulsations has been that the cardiac cycle induces systolic peaks in the intraocular pressure (IOP) which leads to decreases in retinal vein diameters. Recently, theoretical concepts have been published which postulate that IOP changes during the pulse cycle is not the primary driving force for venous pulsation, and hence, predict that the retinal vein diameter is indeed reduced during IOP diastole. The aim of the study was to test this hypothesis in a clinical trial.

Subjects and Methods Continuous IOP and retinal vessel analyser (RVA) measurements were taken from 21 subjects, ages 20 to 30 years, with no known ophthalmologic diseases, while connected to a standard electrocardiograph (ECG). With this methodology, average and synchronised curves for the pulse cycle of IOP and retinal vessel pulsations were calculated for each subject. Each pulse cycle was standardised to 50 timepoints, which enabled direct phase shift comparisons.

Results All subjects showed comparable results. Close to the optic disc (within 0 to 1.5 optic disc diameters away from the disc), retinal arteries led with the first peak at the 16/50 pulse cycle position, followed by IOP peak at the 23/50 cycle position, and then by veins at the 26/50 cycle position.

Conclusion The present method indeed shows that retinal veins do not collapse when the IOP is highest, on the contrary, IOP and retinal vein diameters seem to be in phase, which lends support to the hypothesis that IOP is not the major driving force of the retinal vein pulsations.

Zusammenfassung

Hintergrund Die Herkunft und die dahinterstehenden genauen Mechanismen der Pulsationen von retinalen Venen sind bis dato umstritten. Eine klassische Erklärung ihres Ursprungs war, dass der Herzzyklus systolische Spitzen im Augeninnendruck induziert, was zu einer Reduktion des Durchmessers führt. Ein vor Kurzem publiziertes theoretisches Modell geht jedoch davon aus, dass nicht der Augendruck die Hauptantriebskraft für die Venenpulsation ist und dass somit eine Reduktion der Venendurchmesser während der Augendruckdiastole vorkommen kann. Das Ziel dieser Studie war, diese Hypothese in einem klinischen Versuch zu überprüfen.

Methoden und Probanden Kontinuierliche IOP und Retinal-Vessel-Analyzer-Messungen (RVA-Messungen) wurden an 21 gesunden Probanden zwischen 20 und 30 Jahren ohne ophthalmologische Erkrankungen gemacht, während sie mit einem EKG verbunden waren. Mit dieser Methode konnten gemittelte und synchronisierte Pulsationskurven von dem Augendruck und den Netzhautgefäßen für jeden Probanden berechnet werden. Jeder Zyklus wurde auf 50 Zeitpunkte standardisiert, was einen direkten Vergleich der zeitlichen Verschiebungen ermöglicht hat.

Ergebnisse Alle Probanden zeigten vergleichbare Ergebnisse. In der Papillennähe (entfernt von 0 – 1,5 Papillendurchmesser vom Papillenrand) führen Netzhautarterien mit ihrer Spitze an Position 16/50, gefolgt vom Augeninnendruck mit seiner Druckspitze bei 23/50 und dann von den Netzhautvenen an der Position 26/50 im Zyklus.

Schlussfolgerung Die angewendete Methode zeigt, dass in der Tat der Venendurchmesser in der Retina nicht zum Zeitpunkt des höchsten Augendruckes am kleinsten ist, sondern eher umgekehrt – dass ihre Zyklen praktisch phasengleich sind. Dies Ergebnisse unterstützen die Hypothese, dass der Augeninnendruck nicht die hauptsächliche Antriebskraft für die Netzhautvenenpulsationen ist.

 
  • References

  • 1 Levin BE. The clinical significance of spontaneous pulsations of the retinal vein. Arch Neurol 1978; 35: 37-40
  • 2 Morgan WH, Hazelton ML, Azar SL. et al. Retinal venous pulsation in glaucoma and glaucoma suspects. Ophthalmology 2004; 111: 1489-1494
  • 3 Legler U, Jonas JB. Frequency of spontaneous pulsations of the central retinal vein in glaucoma. J Glaucoma 2009; 18: 210-212
  • 4 Abegão Pinto L, Vandewalle E, De Clerck E. et al. Lack of spontaneous venous pulsation: possible risk indicator in normal tension glaucoma?. Acta Ophthalmol 2013; 91: 514-520
  • 5 Lee E, Kim TW, Kim JA. et al. Spontaneous Retinal Venous Pulsation in Unilateral Primary Open-angle Glaucoma with Low Intraocular Pressure. J Glaucoma 2017; 26: 896-901
  • 6 Ghanem M, Gugleta K, Oettli A. et al. [Analysis of retinal vein motion in glaucoma patients]. Klin Monatsbl Augenheilkd 2013; 230: 358-362
  • 7 Flammer J, Konieczka K. Retinal venous pressure: the role of endothelin. EPMA J 2015; 6: 21
  • 8 Jonas JB. Role of cerebrospinal fluid pressure in the pathogenesis of glaucoma. Acta Ophthalmol 2011; 89: 505-514
  • 9 Morgan WH, Yu DY, Balaratnasingam C. The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma 2008; 17: 408-413
  • 10 Johannesson G, Eklund A, Linden C. Intracranial and Intraocular Pressure at the Lamina cribrosa: Gradient Effects. Curr Neurol Neurosci Rep 2018; 18: 25
  • 11 Levine DN, Bebie H. Phase and amplitude of spontaneous retinal vein pulsations: An extended constant inflow and variable outflow model. Microvasc Res 2016; 106: 67-79
  • 12 Morgan WH, Hazelton ML, Yu DY. Retinal venous pulsation: Expanding our understanding and use of this enigmatic phenomenon. Prog Retin Eye Res 2016; 55: 82-107
  • 13 Stodtmeister R, Oppitz T, Spoerl E. et al. Contact lens dynamometry: the influence of age. Invest Ophthalmol Vis Sci 2010; 51: 6620-6624
  • 14 Kumar DK, Aliahmad B, Hao H. et al. A method for visualization of fine retinal vascular pulsation using nonmydriatic fundus camera synchronized with electrocardiogram. ISRN Ophthalmol 2013; 2013: 865834
  • 15 Hao H, Sasongko MB, Wong TY. et al. Does retinal vascular geometry vary with cardiac cycle?. Invest Ophthalmol Vis Sci 2012; 53: 5799-5805
  • 16 Morgan WH, Hazelton ML, Betz-Stablein BD. et al. Photoplethysmographic measurement of various retinal vascular pulsation parameters and measurement of the venous phase delay. Invest Ophthalmol Vis Sci 2014; 55: 5998-6006
  • 17 Seifertl BU, Vilser W. Retinal Vessel Analyzer (RVA) – design and function. Biomed Tech (Berl) 2002; 47 (Suppl. 12) 678-681
  • 18 Vilser W, Nagel E, Lanzl I. Retinal Vessel Analysis – new possibilities. Biomed Tech (Berl) 2002; 47 (Suppl. 12) 682-685
  • 19 Kaufmann C, Bachmann LM, Thiel MA. Comparison of dynamic contour tonometry with goldmann applanation tonometry. Invest Ophthalmol Vis Sci 2004; 45: 3118-3121
  • 20 Viestenz A, Langenbucher A, Viestenz A. [Reproducibility of dynamic contour tonometry. Comparison with TonoPenXL and Goldmann applanation tonometry – a clinical study on 323 normal eyes]. Klin Monatsbl Augenheilkd 2006; 223: 813-819
  • 21 Golzan SM, Graham SL, Leaney J. et al. Dynamic association between intraocular pressure and spontaneous pulsations of retinal veins. Curr Eye Res 2011; 36: 53-59
  • 22 Georgevsky D, Gangoda SVS, Golzan SM. Postural effects on spontaneous retinal venous pulsations in healthy individuals. Acta Ophthalmol 2019; 97: e839-e843
  • 23 Kain S, Morgan WH, Yu DY. New observations concerning the nature of central retinal vein pulsation. Br J Ophthalmol 2010; 94: 854-857
  • 24 Moret F, Reiff CM, Lagreze WA. et al. Quantitative Analysis of Fundus-Image Sequences Reveals Phase of Spontaneous Venous Pulsations. Transl Vis Sci Technol 2015; 4: 3
  • 25 Garhofer G, Bek T, Boehm AG. et al. Use of the retinal vessel analyzer in ocular blood flow research. Acta Ophthalmol 2010; 88: 717-722