Planta Med 2020; 86(09): 585-618
DOI: 10.1055/a-1148-9000
Biological and Pharmacological Activity
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Natural Phenolic Compounds and Derivatives as Potential Antimalarial Agents

Lucia Mamede
Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
,
Allison Ledoux
Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
,
Olivia Jansen
Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
,
Michel Frédérich
Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
› Author Affiliations
Supported by: Fonds De La Recherche Scientifique - FNRS PDR T.0092.20
Further Information

Publication History

received 16 December 2019
revised 27 March 2020

accepted 29 March 2020

Publication Date:
23 April 2020 (online)

Abstract

Malaria is a parasitic disease endemic to tropical and subtropical regions responsible for hundreds of millions of clinical cases and hundreds of thousands of deaths yearly. Its agent, the Plasmodium sp., has a highly variable antigenicity, which accounts for the emergence and spread of resistance to all available treatments. In light of this rising problem, scientists have turned to naturally occurring compounds obtained from plants recurrently used in traditional medicine in endemic areas. Ethnopharmacological approaches seem to be helpful in selecting the most interesting plants for the search of new antiplasmodial and antimalarial molecules. However, this search for new antimalarials is complex and time-consuming and ultimately leads to a great number of interesting compounds with a lack of discussion of their characteristics. This review aims to examine the most promising antiplasmodial phenolic compounds (phenolic acids, flavonoids, xanthones, coumarins, lignans, among others) and derivatives isolated over the course of the last 28 y (1990 – 2018) and discuss their structure-activity relationships, mechanisms of action, toxicity, new perspectives they could add to the fight against malaria, and finally, the difficulties of transforming these potential compounds into new antimalarials.

 
  • References

  • 1 World Health Organization. World Malaria Report 2019. Geneva: World Health Organization; 2019
  • 2 Pan WH, Xu XY, Shi N, Tsang S, Zhang HJ. Antimalarial activity of plant metabolites. Int J Mol Sci 2018; 19: 1382
  • 3 Fernández-Álvaro E, Hong WD, Nixon GL, OʼNeill PM, Calderón F. Antimalarial chemotherapy: natural product inspired development of preclinical and clinical candidates with diverse mechanisms of action. J Med Chem 2016; 59: 5587-5603
  • 4 Rudrapal M, Chetia D. Plant flavonoids as potential source of future antimalarial leads. Syst Rev Pharm 2016; 8: 13-18
  • 5 Cowman AF, Healer J, Marapana D, Marsh K. Malaria: biology and disease. Cell 2016; 167: 610-624
  • 6 Hostettmann K, Marston A, Ndjoko K, Wolfender JL. The potential of African plants as a source of drugs. Curr Org Chem 2000; 4: 973-1010
  • 7 Willcox ML, Cosentino MJ, Pink R, Bodeker G, Wayling S. Natural products for the treatment of tropical diseases. Trends Parasitol 2001; 17: 58-60
  • 8 Cebrián-Torrejón G, Spelman K, Leblanc K, Muñoz-Durango K, Gutiérrez ST, Ferreira ME, de Arias AR, Figadère B, Maciuk AFA, Grellier P, Cech NB, Poupon E. The antiplasmodium effects of a traditional South American remedy: zanthoxylum chiloperone var. angustifolium against chloroquine resistant and chloroquine sensitive strains of Plasmodium falciparum . Brazilian J Pharmacogn 2011; 21: 652-661
  • 9 Tagboto S, Townson S. Antiparasitic Properties of medicinal Plants and other naturally Occurring Products. In: Academic Press. Advances in Parasitology. Volume 50. Amsterdam: Elsevier; 2001: 199-295
  • 10 Wells TN. Natural products as starting points for future anti-malarial therapies: going back to our roots?. Malar J 2011; 10: S3
  • 11 Wright CW. Plant derived antimalarial agents: new leads and challenges. Phytochem Rev 2005; 4: 55-61
  • 12 Tarkang PA, Appiah-Opong R, Ofori MF, Ayong LS, Nyarko AK. Application of multi-target phytotherapeutic concept in malaria drug discovery: a systems biology approach in biomarker identification. Biomark Res 2016; 4: 25
  • 13 Cai S, Risinger AL, Nair S, Peng J, Anderson TJC, Du L, Powell DR, Mooberry SL, Cichewicz RH. Identification of compounds with efficacy against malaria parasites from common North American plants. J Nat Prod 2016; 79: 490-498
  • 14 Saxena S, Pant N, Jain DC, Bhakuni RS. Antimalarial agents from plant sources. Curr Sci 2003; 85: 1314-1329
  • 15 World Health Organization. Guidelines for the Treatment of Malaria. 3rd ed.. ed. Geneva: World Health Organization; 2015
  • 16 Weinberg ED, Moon J. Malaria and iron: history and review. Drug Metab Rev 2009; 41: 644-662
  • 17 World Health Organization. World Malaria Report 2018. Geneva: World Health Organization; 2018
  • 18 Wright CW. Recent developments in research on terrestrial plants used for the treatment of malaria. Nat Prod Rep 2010; 27: 961-968
  • 19 Caniato R, Puricelli L. Review: natural antimalarial agents (1995–2001). CRC Crit Rev Plant Sci 2003; 22: 79-105
  • 20 Krettli AU, Andrade-Neto VF, Brandão MDGL, Ferrari WMS. The search for new antimalarial drugs from plants used to treat fever and malaria or plants randomly selected: a review. Mem Inst Oswaldo Cruz 2001; 96: 1033-1042
  • 21 De Andrade-Neto VF, Pohlit AM, Pinto ACS, Silva ECC, Nogueira KL, Melo MRS, Henrique MC, Amorim RCN, Silva LFR, Costa MRF, Nunomura RCS, Nunomura SM, Alecrim WD, Alecrim MDGC, Chaves FCM, Vieira PPR. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants. Mem Inst Oswaldo Cruz 2007; 102: 359-365
  • 22 Bero J, Frédérich M, Quetin-Leclercq J. Antimalarial compounds isolated from plants used in traditional medicine. J Pharm Pharmacol 2009; 61: 1401-1433
  • 23 Bero J, Quetin-Leclercq J. Natural products published in 2009 from plants traditionally used to treat malaria. Planta Med 2011; 77: 631-640
  • 24 Xu YJ, Pieters L. Recent developments in antimalarial natural products isolated from medicinal plants. Mini Rev Med Chem 2013; 13: 1056-1072
  • 25 Kaur K, Jain M, Kaur T, Jain R. Antimalarials from nature. Bioorganic Med Chem 2009; 17: 3229-3256
  • 26 Fournet A, Munoz V. Natural products as trypanocidal, antileishmanial and antimalarial drugs. Curr Top Med Chem 2002; 2: 1215-1237
  • 27 Schwikkard S, van Heerden FR. Antimalarial activity of plant metabolites. Nat Prod Rep 2002; 19: 675-692
  • 28 Fletcher S, Avery VM. A novel approach for the discovery of chemically diverse anti-malarial compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway. Malar J 2014; 13: 1-17
  • 29 Bruneton J. Pharmacognosie: Phytochimie, Plantes Médicinales. Fourth Edit. Paris: Lavoisier; 2009
  • 30 da Cunha AP. Farmacognosia e Fitoquimica. First Edit. Lisboa: Fundação Calouste Gulbenkian; 2005
  • 31 Zofou D, Tematio EL, Ntie-Kang F, Tene M, Ngemenya MN, Tane P, Titanji VPK. New antimalarial hits from Dacryodes edulis (Burseraceae), Part I: isolation, in vitro activity, in silico “drug-likeness” and pharmacokinetic profiles. PLoS One 2013; 8: 1-9
  • 32 Horgen FD, Madulid DA, Angerhofer CK, Pezzuto JM, Soejarto DD, Farnsworth NR. Isolation of gallic acid esters as antiplasmodial constituents of Swintonia foxworthyi (Anacardiaceae). Phytomedicine 1997; 4: 353-356
  • 33 Aldulaimi O, Uche FI, Hameed H, Mbye H, Ullah I, Drijfhout F, Claridge TDW, Horrocks P, Li WW. A characterization of the antimalarial activity of the bark of Cylicodiscus gabunensis Harms. J Ethnopharmacol 2017; 198: 221-225
  • 34 Verotta L, DellʼAgli M, Giolito A, Guerrini M, Cabalion P, Bosisio E. In vitro antiplasmodial activity of extracts of Tristaniopsis species and identification of the active constituents: ellagic acid and 3,4,5-trimethoxyphenyl-(6′-O-galloyl)-O-β-D-glucopyranoside. J Nat Prod 2001; 64: 603-607
  • 35 Reddy MK, Gupta SK, Jacob MR, Khan SI, Ferreira D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med 2007; 73: 461-467
  • 36 Ríos JL, Giner RM, Marín M, Recio MC. A pharmacological update of ellagic acid. Planta Med 2018; 84: 1068-1093
  • 37 Soh PN, Witkowski B, Olagnier D, Nicolau ML, Garcia-Alvarez MC, Berry A, Benoit-Vical F. In vitro and in vivo properties of ellagic acid in malaria treatment. Antimicrob Agents Chemother 2009; 53: 1100-1106
  • 38 Banzouzi JT, Prado R, Menan H, Valentin A, Roumestan C, Mallie M, Pelissier Y, Blache Y. In vitro antiplasmodial activity of extracts of Alchornea cordifolia and identification of an active constituent: ellagic acid. J Ethnopharmacol 2002; 81: 399-401
  • 39 Ouattara LP, Sanon S, Mahiou-Leddet V, Gansané A, Baghdikian B, Traoré A, Nébié I, Traoré AS, Azas N, Ollivier E, Sirima SB. In vitro antiplasmodial activity of some medicinal plants of Burkina Faso. Parasitol Res 2014; 113: 405-416
  • 40 DellʼAgli M, Parapini S, Basilico N, Verotta L, Taramelli D, Berry CC, Bosisio E. In vitro studies on the mechanism of action of two compounds with antiplasmodial activity: Ellagic acid and 3,4,5-trimethoxyphenyl (6′-O-galloyl)-β-D-glucopyranoside. Planta Med 2003; 69: 162-164
  • 41 Nandakumar DN, Arun V, Vathsala PG, Rangarajan P, Nandakumar DN, Nagaraj VA, Vathsala PG. Curcumin-artemisinin combination therapy for malaria curcumin-artemisinin combination therapy for malaria. Antimicrob Agents Chemother 2006; 50: 1859-1861
  • 42 Javeri I, Chand N. Curcumin. Amsterdam: Elsevier Inc.; 2016
  • 43 Jain K, Sood S, Gowthamarajan K. Modulation of cerebral malaria by curcumin as an adjunctive therapy. Brazilian J Infect Dis 2013; 17: 579-591
  • 44 Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun 2005; 326: 472-474
  • 45 Cui L, Miao J, Cui L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: Inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother 2007; 51: 488-494
  • 46 Chakrabarti R, Rawat PS, Cooke BM, Coppel RL, Patankar S. Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules. PLoS One 2013; 8: 1-14
  • 47 Haddad M, Sauvain M, Deharo E. Curcuma as a parasiticidal agent: a review. Planta Med 2011; 77: 672-678
  • 48 Priyadarsini KI. Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des 2013; 19: 2093-2100
  • 49 Mendanha Da Cunha CR, Mendanha Neto SA, Carlos Da Silva C, Cortez AP, Gomes MDN, Martins FI, Alonso A, Rezende KR, Menegatti R, De Magalhães MTQ, Valadares MC. 4-Nerolidylcatechol and its synthetic analogues: antioxidant activity and toxicity evaluation. Eur J Med Chem 2013; 62: 371-378
  • 50 Schmidt TJ, Khalid SA, Romanha AJ, Alves TM, Biavatti MW, Brun R, Da Costa FB, de Castro SL, Ferreira VF, de Lacerda MV, Lago JH, Leon LL, Lopes NP, das Neves Amorim RC, Niehues M, Ogungbe IV, Pohlit AM, Scotti MT, Setzer WN, de N C Soeiro M, Steindel M, Tempone AG. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases, part II. Curr Med Chem 2012; 19: 2176-2228
  • 51 Subeki S, Matsuura H, Takahashi K, Yamasaki M, Yamato O, Maede Y, Katakura K, Kobayashi S, Trimurningsih T, Chairul C, Yoshihara T. Anti-babesial and anti-plasmodial compounds from Phyllanthus niruri . J Nat Prod 2005; 68: 537-539
  • 52 Chung IM, Ghimire BK, Kang EY, Moon HI. Antiplasmodial and cytotoxic activity of khellactone derivatives from Angelica purpuraefolia Chung. Phyther Res 2010; 24: 469-471
  • 53 Yenjai C, Sripontan S, Sriprajun P, Kittakoop P, Jintasirikul A, Tanticharoen M, Thebtaranonth Y. Coumarins and carbazoles with antiplasmodial activity from Clausena harmandiana . Planta Med 2000; 66: 277-279
  • 54 Cherrak SA, Mokhtari-Soulimane N, Berroukeche F, Bensenane B, Cherbonnel A, Merzouk H, Elhabiri M. In vitro antioxidant versus metal ion chelating properties of flavonoids: a structure-activity investigation. PLoS One 2016; 11: 1-21
  • 55 Tasdemir D, Lack G, Brun R, Rüedi P, Scapozza L, Perozzo R. Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids. J Med Chem 2006; 49: 3345-3353
  • 56 Bringmann G, Ochse M, Zotz G, Peters K, Peters EM, Brun R, Schlauer J. 6-hydroxyluteolin-7-O-(1-α-rhamnoside) from Vriesea sanguinolenta Cogn. and Marchal (Bromeliaceae). Phytochemistry 2000; 53: 965-969
  • 57 Widyawaruyanti A, Subehan S, Kalauni SK, Awale S, Nindatu M, Zaini NC, Syafruddin D, Asih PBS, Tezuka Y, Kadota S. New prenylated flavones from Artocarpus champeden, and their antimalarial activity in vitro . J Nat Med 2007; 61: 410-413
  • 58 Wahyuni TS, Ekasari W, Widyawaruyanti A, Hirasawa Y, Morita H, Zaini NC. Artopeden A. A new antiplasmodial isoprenylated flavone from Artocarpus champeden . Heterocycles 2009; 79: 1121-1126
  • 59 Bourjot M, Apel C, Martin MT, Grellier P, Nguyen VH, Guéritte F, Litaudon M. Antiplasmodial, antitrypanosomal, and cytotoxic activities of prenylated flavonoids isolated from the stem bark of artocarpus styracifolius. Planta Med 2010; 76: 1600-1604
  • 60 Alkandahri MY, Berbudi A, Subarnas A. Active compounds and antimalaria properties of some medicinal plants in Indonesia – a review. Syst Rev Pharm 2018; 9: 64-69
  • 61 Auffret G, Labaied M, Frappier F, Rasoanaivo P, Grellier P, Lewin G. Synthesis and antimalarial evaluation of a series of piperazinyl flavones. Bioorganic Med Chem Lett 2007; 17: 959-963
  • 62 Abdalla MA, Laatsch H. Flavonoids from Sudanese Albizia zygia (Leguminosae, subfamily Mimosoideae), a plant with antimalarial potency. African J Tradit Complement Altern Med 2012; 9: 56-58
  • 63 Weniger B, Vonthron-Sénécheau C, Kaiser M, Brun R, Anton R. Comparative antiplasmodial, leishmanicidal and antitrypanosomal activities of several biflavonoids. Phytomedicine 2006; 13: 176-180
  • 64 Azebaze AGB, Teinkela JEM, Nguemfo EL, Valentin A, Dongmo AB, Vardamides JC. Antiplasmodial activity of some phenolic compounds from cameroonians allanblackia. Afr Health Sci 2015; 15: 835-840
  • 65 Ahmed MS, Galal AM, Ross SA, Ferreira D, ElSohly MA, Ibrahim ARS, Mossa JS, El-Feraly FS. A weakly antimalarial biflavanone from Rhus retinorrhoea . Phytochemistry 2001; 58: 599-602
  • 66 Konziase B. Protective activity of biflavanones from Garcinia kola against Plasmodium infection. J Ethnopharmacol 2015; 172: 214-218
  • 67 Ichino C, Kiyohara H, Soonthornchareonnon N, Chuakul W, Ishiyama A, Sekiguchi H, Namatame M, Otoguro K, Omura S, Yamada H. Antimalarial activity of biflavonoids from Ochna integerrima . Planta Med 2006; 72: 611-614
  • 68 Muiva-Mutisya LM, Atilaw Y, Heydenreich M, Koch A, Akala HM, Cheruiyot AC, Brown ML, Irungu B, Okalebo FA, Derese S, Mutai C, Yenesew A. Antiplasmodial prenylated flavanonols from Tephrosia subtriflora . Nat Prod Res 2018; 32: 1407-1414
  • 69 Hellmann JK, Münter S, Wink M, Frischknecht F. Synergistic and additive effects of epigallocatechin gallate and digitonin on Plasmodium sporozoite survival and motility. PLoS One 2010; 5: e8682
  • 70 Ramanandraibe V, Grellier P, Martin MT, Deville A, Joyeau R, Ramanitrahasimbola D, Mouray E, Rasoanaivo P, Mambu L. Antiplasmodial phenolic compounds from Piptadenia pervillei . Planta Med 2008; 74: 417-421
  • 71 Budiman I, Tjokropranoto R, Widowati W, Rahardja F, Maesaroh M, Fauziah N. Antioxidant and anti-malarial properties of catechins. Br J Med Med Res 2015; 5: 895-902
  • 72 Sharma SK, Parasuraman P, Kumar G, Surolia N, Surolia A. Green tea catechins potentiate triclosan binding to enoyl-ACP reductase from Plasmodium falciparum (PfENR). J Med Chem 2007; 50: 765-775
  • 73 Thipubon P, Tipsuwan W, Uthaipibull C, Santitherakul S, Srichairatanakool S. Anti-malarial effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one and green tea extract on erythrocyte-stage Plasmodium berghei in mice. Asian Pac J Trop Biomed 2015; 5: 932-936
  • 74 Symonowicz M, Kolanek M. Biotechnology and food sciences flavonoids and their properties to form chelate complexes. Biotechnol Food Sci 2012; 76: 35-41
  • 75 Thipubon P, Uthaipibull C, Kamchonwongpaisan S, Tipsuwan W, Srichairatanakool S. Inhibitory effect of novel iron chelator, 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) and green tea extract on growth of Plasmodium falciparum . Malar J 2015; 14: 1-9
  • 76 Tekwani B, Walker L. Targeting the hemozoin synthesis pathway for new antimalarial drug discovery: technologies for in vitro b-hematin formation assay. Comb Chem High Throughput Screen 2005; 8: 63-79
  • 77 Nitie-Kang F, Onguéne PA, Lifongo LL, Ndom JC, Sippl W, Mbaze LM. The potential of anti-malarial compounds derived from African medicinal plants, part II: a pharmacological evaluation of non-alkaloids and non-terpenoids. Malar J 2014; 13: 1-20
  • 78 Ferrer P, Vega-Rodriguez J, Tripathi AK, Jacobs-Lorena M, Sullivan DJ. Antimalarial iron chelator FBS0701 blocks transmission by Plasmodium falciparum gametocyte activation inhibition. Antimicrob Agents Chemother 2015; 59: 1418-1426
  • 79 Dettrakul S, Surerum S, Rajviroongit S, Kittakoop P. Biomimetic transformation and biological activities of globiferin, a terpenoid benzoquinone from Cordia globifera . J Nat Prod 2009; 72: 861-865
  • 80 Vega AS, Rojano B, Blair S, Segura C, Figadere B, Seon B, Grellier P, Sáez J. Antimalarials and antioxidants compounds from Piper tricuspe (Piperaceae). Pharmacologyonline 2008; 1: 1-8
  • 81 Fujisaki R, Kamei K, Yamamura M, Nishiya H, Inouye S, Takahashi M, Abe S. In vitro and in vivo anti-plasmodial activity of essential oils, including hinokitiol. Southeast Asian J Trop Med Public Health 2012; 43: 270-279
  • 82 Johnson-Ajinwo OR, Ullah I, Mbye H, Richardson A, Horrocks P, Li WW. The synthesis and evaluation of thymoquinone analogues as anti-ovarian cancer and antimalarial agents. Bioorganic Med Chem Lett 2018; 28: 1219-1222
  • 83 Khader M, Eckl PM. Thymoquinone: An emerging natural drug with a wide range of medical applications. Iran J Basic Med Sci 2014; 17: 950-957
  • 84 Weiss CR, Moideen SVK, Croft SL, Houghton PJ. Activity of extracts and isolated naphthoquinones from Kigelia pinnata against Plasmodium falciparum . J Nat Prod 2000; 63: 1306-1309
  • 85 Kuete V, Omosa LK, Tala VRS, Midiwo JO, Mbaveng AT, Swaleh S, Sivas H. Chytotoxicity of plumbagin, rapanone and 12 other naturally occurring quinones from Kenyan flora toward human carcinoma cells. BMC Pharmacol Toxicol 2016; 17: 1-10
  • 86 Sumsakul W, Plengsuriyakarn T, Chaijaroenkul W, Viyanant V, Karbwang J. Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement Altern Med 2014; 14: 1-6
  • 87 Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N, Krungkrai J. Antimalarial naphthoquinones from Nepenthes thorelii . Planta Med 1998; 64: 237-241
  • 88 Perez H, Diáz F, Medina JD. Chemical investigation and in vitro antimalarial activity of Tabebuia ochracea ssp. Neochrysantha. Int J Pharmacogn 1997; 35: 227-231
  • 89 Dagne E, Steglich W. Knipholone: a unique anthraquinone derivative from Kniphofia foliosa . Phytochemimy 1984; 23: 1729-1731
  • 90 Bringmann G, Menche D, Bezabih M, Abegaz B, Kaminsky R. Antiplasmodial activity of knipholone and related natural phenylanthraquinones. Planta Med 1999; 65: 757-758
  • 91 Abegaz BM, Bezabih M, Msuta T, Brun R, Menche D, Mühlbacher J, Bringmann G. Gaboroquinones A and B and 4′-O-demethylknipholone-4′-O-β-D-glucopyranoside, phenylanthraquinones from the roots of Bulbine frutescens . J Nat Prod 2002; 65: 1117-1121
  • 92 François G, Steenackers T, Assi LA, Steglich W, Lamottke K, Holenz J, Bringmann G. Vismione H and structurally related anthranoid compounds of natural and synthetic origin as promising drugs against the human malaria parasite Plasmodium falciparum: structure-activity relationships. Parasitol Res 1999; 85: 582-588
  • 93 Laphookhieo S, Maneerat W, Koysomboon S. Antimalarial and cytotoxic phenolic compounds from Cratoxylum maingayi and Cratoxylum cochinchinense . Molecules 2009; 14: 1389-1395
  • 94 Lenta BN, Devkota KP, Ngouela S, Boyom FF, Naz Q, Choudhary MI, Tsamo E, Rosenthal PJ, Sewald N. Anti-plasmodial and cholinesterase inhibiting activities of some constituents of Psorospermum glaberrimum . Chem Pharm Bull (Tokyo) 2008; 56: 222-226
  • 95 Lenta NN, Silverre N, Fabrice FB, Tantangmo F, Guy RF, Tsamo E, Gut J, Philip JR, Connolly JD. Anti-plasmodial activity of some constituents of the root bark of Harungana madagascariensis L. (Hypericaceae). Chem Pharm Bull 2007; 55: 464-467
  • 96 Noungoue DT, Chaabi M, Ngouela S, Antheaume C, Boyom FF, Gut J, Rosenthal PJ, Lobstein A, Tsamo E. Antimalarial compounds from the stem bark of Vismia laurentii . Z Naturforsch C J Biosci 2009; 64: 210-214
  • 97 Hou Y, Cao S, Brodie PJ, Callmander MW, Ratovoson F, Rakotobe EA, Rasamison VE, Ratsimbason M, Alumasa JN, Roepe PD, Kingston DGI. Antiproliferative and antimalarial anthraquinones of Scutia myrtina from the Madagascar forest. Bioorg Med Chem 2009; 17: 2871-2876
  • 98 Achenbach H, Waibel R, Nkunya MHH, Weenen H. Antimalarial compounds from Hoslundia opposita . Phytochemistry 1992; 31: 3781-3784
  • 99 Liu XW, Sok DE. Identification of alkylation-sensitive target chaperone proteins and their reactivity with natural products containing michael acceptor. Arch Pharm Res 2003; 26: 1047-1054
  • 100 Figueiredo JN, Räz B, Séquin U. Novel quinone methides from Salacia kraussii with in vitro antimalarial activity. J Nat Prod 1998; 61: 718-723
  • 101 Sreeramulu S, Gande SL, Göbel M, Schwalbe H. Molecular mechanism of inhibition of the human protein complex hsp90-cdc37, a kinome chaperone-cochaperone, by triterpene celastrol. Angew Chemie Int Ed 2009; 48: 5853-5855
  • 102 Zhou Q. Natural Diterpene and Triterpene Quinone Methides: Structures, Synthesis, and biological Potentials. In: Rokita SE. ed. Quinone Methides. Hoboken, NJ: John Wiley & Sons, Inc.; 2009: 269-295
  • 103 Toteva MM, Richard JP. The generation and reactions of quinone methides. Adv Phys Org Chem 2011; 39-91
  • 104 Rokita SE. Reversible Alkylation of DNA. In: Rokita SE. ed. Quinone Methides. Hoboken, NJ: John Wiley & Sons, Inc.; 2009: 297-327
  • 105 Gutiérrez RMP. Handbook of Compounds with antiprotozoal Activity isolated from Plants. New York: Nova Science Publishers, Inc.; 2007
  • 106 Grellier P, Nemeikaitė-Čėnienė A, Šarlauskas J, Čėnas N. Role of single-electron oxidation potential and lipophilicity in the antiplasmodial in vitro activity of polyphenols: comparison to mammalian cells. Z Naturforsch C J Biosci 2008; 63: 445-450
  • 107 Li WW, Heinze J, Haehnel W. Site-specific binding of quinones to proteins through thiol addition and addition-elimination reactions. J Am Chem Soc 2005; 127: 6140-6141
  • 108 Portela C, Afonso CMM, Pinto MMM, Ramos MJ. Definition of an electronic profile of compounds with inhibitory activity against hematin aggregation in malaria parasite. Bioorganic Med Chem 2004; 12: 3313-3321
  • 109 Mahabusarakam W, Kuaha K, Wilairat P, Taylor W. Prenylated xanthones as potential antiplasmodial substances. Planta Med 2006; 72: 912-916
  • 110 Azebaze AGB, Dongmo AB, Meyer M, Ouahouo BMW, Valentin A, Laure Nguemfo E, Nkengfack AE, Vierling W. Antimalarial and vasorelaxant constituents of the leaves of Allanblackia monticola (Guttiferae). Ann Trop Med Parasitol 2007; 101: 23-30
  • 111 Hay AE, Hélesbeux JJ, Duval O, Labaïed M, Grellier P, Richomme P. Antimalarial xanthones from Calophyllum caledonicum and Garcinia vieillardii . Life Sci 2004; 75: 3077-3085
  • 112 Lenta BN, Kamdem LM, Ngouela S, Tantangmo F, Devkota KP, Boyom FF, Rosenthal PJ, Tsamo E. Antiplasmodial constituents from the fruit pericarp of Pentadesma butyracea . Planta Med 2011; 77: 377-379
  • 113 Upegui Y, Robledo SM, Gil Romero JF, Quiñones W, Archbold R, Torres F, Escobar G, Nariño B, Echeverri F. In vivo antimalarial activity of α-mangostin and the new xanthone δ-mangostin. Phyther Res 2015; 29: 1195-1201
  • 114 Ngouela S, Lenta BN, Noungoue DT, Ngoupayo J, Boyom FF, Tsamo E, Gut J, Rosenthal PJ, Connolly JD. Anti-plasmodial and antioxidant activities of constituents of the seed shells of Symphonia globulifera Linn f. Phytochemistry 2006; 67: 302-306
  • 115 De Souza NB, Carmo AML, Da Silva AD, França TCC, Krettli AU. Antiplasmodial activity of chloroquine analogs against chloroquine-resistant parasites, docking studies and mechanisms of drug action. Malar J 2014; 13: 1-12
  • 116 Hanboonkunupakarn B, White NJ. The threat of antimalarial drug resistance. Trop Dis Travel Med Vaccines 2015; 2: 1-5
  • 117 De Andrade-Neto VF, Da Silva T, Lopes LMX, Do Rosário VE, Varotti FDP, Krettli AU. Antiplasmodial activity of aryltetralone lignans from Holostylis reniformis . Antimicrob Agents Chemother 2007; 51: 2346-2350
  • 118 Zhang HJ, Tamez PA, Hoang VD, Tan GT, Hung NV, Xuan LT, Huong LM, Cuong NM, Thao DT, Soejarto DD, Fong HHS, Pezzuto JM. Antimalarial compounds from Rhaphidophora decursiva . J Nat Prod 2001; 64: 772-777
  • 119 Kharazmi A, Chen M, Theander T, Christensen SB. Discovery of oxygentade chalcones as novel antimalarial agents. Ann Trop Med Parasitol 1997; 91: S91-S95
  • 120 Mishra LC, Bhattacharya A, Bhasin VK. Phytochemical licochalcone A enhances antimalarial activity of artemisinin in vitro . Acta Trop 2009; 109: 194-198
  • 121 Yadav N, Dixit SK, Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, Bhasin VK. Antimalarial activity of newly synthesized chalcone derivatives in vitro . Chem Biol Drug Des 2012; 80: 340-347
  • 122 Chen M, Theander TG, Christensen SB, Hviid L, Zhai L, Kharazmi A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother 1994; 38: 1470-1475
  • 123 Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 2007; 42: 125-137
  • 124 Lenta BN, Ateba JT, Chouna JR, Aminake MN, Nardella F, Pradel G, Neumann B, Stammler HG, Vonthron-Sénécheau C, Ngouela S, Sewald N. Two 2, 6-Dioxabicyclo[3.3.1]nonan-3-ones from Phragmanthera capitata (Spreng.) Balle (Loranthaceae). Helv Chim Acta 2015; 98: 945-952
  • 125 Muhammad I, Li XC, Dunbar DC, ElSohly MA, Khan IA. Antimalarial (+)- trans-hexahydrodibenzopyran derivatives from Machaerium multiflorum . J Nat Prod 2001; 64: 1322-1325
  • 126 World Health Organization. WHO Traditional Medicine Strategy: 2014 – 2023. Geneva: World Health Organization; 2013
  • 127 Mukherjee PK. Plant Metabolomics and Quality Evaluation of herbal Drugs. In: Mukherjee PK. Quality Control and Evaluation of herbal Drugs. Amsterdam: Elsevier Inc.; 2019: 629-653
  • 128 Weniger B, Vonthron-Sénécheau C, Arango GJ, Kaiser M, Brun R, Anton R. A bioactive biflavonoid from Campnosperma panamense . Fitoterapia 2004; 75: 764-767
  • 129 Milatovic D, Zaja-Milatovic S, Gupta RC. Oxidative Stress and Excitotoxicity: Antioxidants from Nutraceuticals. In: Gupta RC. ed. Nutraceuticals: Efficacy, Safety and Toxicity. Amsterdam: Elsevier Inc.; 2016: 401-413
  • 130 Isah MB, Ibrahim MA. The role of antioxidants treatment on the pathogenesis of malarial infections: a review. Parasitol Res 2014; 113: 801-809
  • 131 Ginsburg H, Stein WD. New permeability pathways induced by the malarial parasite in the membrane of its host erythrocyte: potential routes for targeting of drugs into infected cells. Biosci Rep 1987; 7: 455-463
  • 132 Goodyer ID, Pouvelle B, Schneider TG, Trelka DP, Taraschi TF. Characterization of macromolecular transport pathways in malaria-infected erythrocytes. Mol Biochem Parasitol 1997; 87: 13-28
  • 133 Ignatushchenko MV, Winter RW, Bächinger HP, Hinrichs DJ, Riscoe MK. Xanthones as antimalarial agents; studies of a possible mode of action. FEBS Lett 1997; 409: 67-73
  • 134 Burrows JN, Van Huijsduijnen RH, Möhrle JJ, Oeuvray C, Wells TN. Designing the next generation of medicines for malaria control and eradication. Malar J 2013; 12: 1-20
  • 135 Aditya NP, Vathsala PG, Vieira V, Murthy RSR, Souto EB. Advances in nanomedicines for malaria treatment. Adv Colloid Interface Sci 2013; 201 – 202: 1-17
  • 136 Aldrich C, Bertozzi C, Georg GI, Kiessling L, Lindsley C, Liotta D, Merz KM, Schepartz A, Wang S. The ecstasy and agony of assay interference compounds. J Med Chem 2017; 60: 2165-2168
  • 137 Baell J, Walters MA. Chemical con artists foil drug discovery. Nature 2014; 513: 481-483
  • 138 Baell JB. Feeling natureʼs PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod 2016; 79: 616-628
  • 139 Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 2010; 53: 2719-2740
  • 140 Ingólfsson HI, Thakur P, Herold KF, Hobart EA, Ramsey NB, Periole X, de Jong DH, Zwama M, Yilmaz D, Hall K, Maretzky T, Hemmings HC, Blobel C, Marrink SJ, Koçer A, Sack JT, Andersen OS. Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem Biol 2014; 9: 1788-1798
  • 141 Baell JB, Nissink JWM. Seven year itch: pan-Assay interference compounds (PAINS) in 2017 – utility and limitations. ACS Chem Biol 2018; 13: 36-44
  • 142 Marijon A, Bonnot G, Fourier A, Bringer C, Lavoignat A, Gagnieu MC, Bienvenu AL, Picot S. Efficacy of intranasal administration of artesunate in experimental cerebral malaria. Malar J 2014; 13: 501
  • 143 Mostafa AE, El-Hela AA, Mohammad AEI, Cutler SJ, Ross SA. New triterpenoidal saponins from Koelreuteria paniculata . Phytochem Lett 2016; 17: 213-218
  • 144 Zofou D, Kengne ABO, Tene M, Ngemenya MN, Tane P, Titanji VPK. In vitro antiplasmodial activity and cytotoxicity of crude extracts and compounds from the stem bark of Kigelia africana (Lam.) Benth (Bignoniaceae). Parasitol Res 2011; 108: 1383-1390
  • 145 Muganga R, Angenot L, Tits M, Frederich M. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. Planta Med 2014; 80: 482-489
  • 146 Njomnang Soh P, Witkowski B, Gales A, Huyghe E, Berry A, Pipy B, Benoit-Vical F. Implication of glutathione in the In vitro antiplasmodial mechanism of action of ellagic acid. PLoS One 2012; 7: e45906
  • 147 Nunome S, Ishiyama A, Kobayashi M, Otoguro K, Kiyohara H, Yamada H, Omura S. In vitro antimalarial activity of biflavonoids from Wikstroemia indica . Planta Med 2004; 70: 76-78
  • 148 Pavanandt K, Webster HK, Yongvanitchit K, Kun-anake A, Dechatiwongse T, Nutakul W, Bansiddhi J. Schizontocidal activity of Celastrus paniculatus Willd. against Plasmodium falciparum in vitro . Phyther Res 1989; 3: 136-139
  • 149 Azebaze AGB, Meyer M, Valentin A, Nguemfo EL, Fomum ZT, Nkengfack AE. Prenylated xanthone derivatives with antiplasmodial activity from Allanblackia monticola Staner L. C. Chem Pharm Bull (Tokyo) 2006; 37: 111-113
  • 150 Okada K, Tamura Y, Yamamoto M, Inoue Y, Takagaki R, Takahashi K, Demizu S, Kajiyama K, Hiraga Y, Kinoshita T. Identification of antimicrobial and antioxidant constituents from licorice of Russian and Xinjiang origin. Chem Pharm Bull (Tokyo) 1989; 37: 2528-2530