Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(06): 616-620
DOI: 10.1055/a-1290-8469
DOI: 10.1055/a-1290-8469
letter
A Palladium-Free Sonogashira Coupling Protocol Employing an In Situ Prepared Copper/Chelating 1,2,3-Triazolylidene System
This work was supported by the Hellenic Foundation for Research and Innovation under the ‘First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant’ (H.F.R.I., Grant Number: 16 – Acronym: SUSTAIN). The contribution of the European Cooperation in Science and Technology (COST, Grant Number CA15106; C–H Activation in Organic Synthesis – CHAOS) is also gratefully acknowledged. Financial support from a joint DAAD-IKY project (funded by DAAD through funds from the Bundesministerium für Bildung und Forschung - BMBF) is also acknowledged.
Abstract
A new, palladium-free Sonogashira coupling reaction protocol using a catalytic system that comprises a simple, cheap, widely available copper salt and a chelating 1,2,3-triazolylidene ligand precursor is reported. This protocol provides the desired coupling products in moderate to very good yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1290-8469.
- Supporting Information
Publication History
Received: 20 September 2020
Accepted after revision: 15 October 2020
Accepted Manuscript online:
15 October 2020
Article published online:
13 November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Sonogashira K. J. Organomet. Chem. 2002; 653: 46
- 2 Cassar L. J. Organomet. Chem. 1975; 93: 253
- 3 Dieck HA, Heck FR. J. Organomet. Chem. 1975; 93: 259
- 4 Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975; 16: 4467
- 5 Wang D, Gao S. Org. Chem. Front. 2014; 1: 556
- 6 Cosford ND. P, Tehrani L, Roppe J, Schweiger E, Smith ND, Anderson J, Bristow L, Brodkin J, Jiang X, McDonald I, Rao S, Washburn M, Varney MA. J. Med. Chem. 2003; 46: 204
- 7 Sonoda M, Inaba A, Itahashi K, Tobe Y. Org. Lett. 2001; 3: 2419
- 8 Li B, Fu Y, Han Y, Bo Z. Macromol. Rapid Commun. 2006; 27: 1355
- 9 Hoger S, Rosselli S, Ramminger AD, Enkelmann V. Org. Lett. 2002; 4: 4269
- 10 Tobe Y, Utsumi N, Nagano A, Naemura K. Angew. Chem. Int. Ed. 1998; 37: 1285
- 11a Díez-González S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
- 11b Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
- 12 Erdemir F, Aktaş A, Barut Celepci D, Gök Y. Chem. Pap. 2020; 74: 99
- 13 Tzouras NV, Stamatopoulos IK, Papastavrou AT, Liori A, Vougioukalakis GC. Coord. Chem. Rev. 2017; 343: 25
- 14a Monnier F, Turtaut F, Duroure L, Taillefer M. Org. Lett. 2008; 10: 3203
- 14b Carril M, Correa A, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 4862
- 14c Yi J, Lu X, Sun Y.-Y, Xiao B, Liu L. Angew. Chem. Int. Ed. 2013; 52: 12409
- 15 Leadbeater NE, Marco M, Tominack BJ. Org. Lett. 2003; 5: 3919
- 16 Protti S, Fagnoni M, Albini A. Angew. Chem. Int. Ed. 2005; 44: 5675
- 17 Karak M, Barbosa LC. A, Hargaden GC. RSC Adv. 2014; 4: 53442
- 18 Neofotistos SP, Tzouras NV, Pauze M, Gomez-Bengoa E, Vougioukalakis GC. Adv. Synth. Catal. 2020; 362: 3872
- 19 Adejumo TT, Tzouras NV, Zorba LP, Radanović D, Pevec A, Grubišić S, Mitić D, Anđelković KK, Vougioukalakis GC, Čobeljić B, Turel I. Molecules 2020; 25: 4043
- 20 Tzouras NV, Neofotistos SP, Vougioukalakis GC. ACS Omega 2019; 4: 10279
- 21 Papastavrou AT, Pauze M, Gomez-Bengoa E, Vougioukalakis GC. ChemCatChem 2019; 11: 5379
- 22 Voutyritsa E, Triandafillidi I, Tzouras NV, Nikitas NF, Pefkianakis EK, Vougioukalakis GC, Kokotos CG. Molecules 2019; 24: 1644
- 23 Pinaka A, Vougioukalakis GC. Coord. Chem. Rev. 2015; 288: 69
- 24 Liori AA, Stamatopoulos IK, Papastavrou AT, Pinaka A, Vougioukalakis GC. Eur. J. Org. Chem. 2018; 44: 6134
- 25 Suntrup L, Hohloch S, Sarkar B. Chem. Eur. J. 2016; 22: 18009
- 26 Chen H.-J, Lin Z.-Y, Li M.-Y, Lian R.-J, Xue Q.-W, Chung J.-L, Chen S.-C, Chen Y.-J. Tetrahedron 2010; 66: 7755
- 27 Chinchilla R, Najera C. Chem. Soc. Rev. 2011; 40: 5084
- 28 Okuro K, Furuune M, Enna M, Miura M, Nomura M. J. Org. Chem. 1993; 58: 4716
- 29 Monnier F, Turtaut F, Duroure L, Taillefer M. Org. Lett. 2008; 10: 3203
- 30a Casitas A, Ribas X. Chem. Sci. 2013; 4: 2301
- 30b Rovira M, Font M, Acuna-Pares F, Parella T, Luis JM, Lloret-Fillol J, Ribas X. Chem. Eur. J. 2014; 20: 10005
- 31 Beerhues J, Fauché K, Cisnetti F, Sarkar B, Gautier A. Dalton Trans. 2019; 48: 8931
- 32 General Catalytic Protocol Procedure A dry Schlenk tube equipped with a magnetic stirrer is loaded under argon with Cu(OAc)2 (10 mol%, 0.0167 mmol), ligand L (5 mol%, 0.0084 mmol), K2CO3 (0,33 mmol), the aryl halide (0.167 mmol), and DMF (1 mL). The above mixture is degassed with a slow bubbling flow of argon for 20 min. The terminal alkyne (0.2 mmol) is then added, and the reaction mixture is sealed under an argon atmosphere. The Schlenk tube is transferred in a preheated oil bath (130 °C), and the reaction mixture is stirred for 8 h. Then, the reaction is cooled to room temperature and transferred in a 100 mL separating funnel with 20 mL of H2O. The mixture is extracted with ethyl acetate (3 × 10 mL). The organic layers are combined, washed with brine (15 mL), and dried over MgSO4. The dry organic layer is filtered, and the solvent is removed in a rotary evaporator. Products are separated with gradient column chromatography using CH2Cl2/petroleum ether. 1-Nitro-4-(phenylethynyl)benzene (3a) Prepared according to the general procedure and obtained as a yellow solid in 80% yield (30 mg, 0.134 mmol). 1H NMR (200 MHz, CDCl3): δ = 8.23 (d, J = 9.0 Hz, 2 H), 7.67 (d, J = 9.0 Hz, 2 H), 7.61–7.52 (m, 2 H), 7.44–7.34 (m, 3 H). 13C NMR (101 MHz, CDCl3): δ = 147.14, 132.43, 132.00, 130.43, 129.43, 128.69, 123.80, 122.26, 94.86, 87.70.