Synlett 2021; 32(03): 267-272
DOI: 10.1055/a-1299-3009
letter

Electrochemical Oxidative C–H Thiocyanation or Selenocyanation of Imidazopyridines and Arenes

Ting Cui
a   College of Chemistry and Materials Science, Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, P. R. of China
,
Xiaofeng Zhang
a   College of Chemistry and Materials Science, Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, P. R. of China
,
Jun Lin
a   College of Chemistry and Materials Science, Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, P. R. of China
b   Changzhou Innovation and Development Institute, Nanjing Normal University, Changzhou 213022, P. R. of China
,
Zitong Zhu
a   College of Chemistry and Materials Science, Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, P. R. of China
,
Ping Liu
a   College of Chemistry and Materials Science, Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, P. R. of China
b   Changzhou Innovation and Development Institute, Nanjing Normal University, Changzhou 213022, P. R. of China
,
Peipei Sun
a   College of Chemistry and Materials Science, Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (Project 21672104, 21502097) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.


Abstract

Regioselective electrochemical oxidative C–H thiocyanation or selenocyanation of imidazopyridines was achieved by using an undivided electrolytic cell. Transition-metal- and oxidant-free conditions are striking features of this protocol. A library of thiocyanated imidazopyridines with a broad range of functional groups were synthesized in high yields. This method was also applicable to the thiocyanation or selenocyanation of some electron-rich arenes.

Supporting Information



Publication History

Received: 12 September 2020

Accepted after revision: 28 October 2020

Accepted Manuscript online:
28 October 2020

Article published online:
27 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 DeCollo TV, Lees WJ. J. Org. Chem. 2001; 66: 4244
    • 2a Ke F, Qu Y, Jiang Z, Li Z, Wu D, Zhou X. Org. Lett. 2011; 13: 454
    • 2b Bayarmagnai B, Matheis C, Jouvin K, Goossen LJ. Angew. Chem. Int. Ed. 2015; 54: 5753
    • 2c Jouvin K, Matheis C, Goossen LJ. Chem. Eur. J. 2015; 21: 14324
    • 4a Sengupta D, Basu B. Tetrahedron Lett. 2013; 54: 2277
    • 4b Maurya CK, Mazumder A, Kumar A, Gupta PK. Synlett 2016; 27: 409
  • 5 Renard P.-Y, Schwebel H, Vayron P, Josien L, Valleix A, Mioskowski C. Chem. Eur. J. 2002; 8: 2910
    • 6a Vorona S, Artamonova T, Zevatskii Y, Myznikov L. Synthesis 2014; 46: 781
    • 6b Song W, Li M, Dong K, Zheng Y. Adv. Synth. Catal. 2019; 361: 5258
    • 7a Patil AD, Freyer AJ, Reichwein R, Carte B, Killmer LB, Faucette L, Johnson RK, Faulkner DJ. Tetrahedron Lett. 1997; 38: 363
    • 7b Yasman Y, Edrada RA, Wray V, Proksch P. J. Nat. Prod. 2003; 66: 1512
    • 7c Dutta S, Abe H, Aoyagi S, Kibayashi C, Gates KS. J. Am. Chem. Soc. 2005; 127: 15004
  • 8 Ciszek JW, Stewart MP, Tour JM. J. Am. Chem. Soc. 2004; 126: 13172
  • 9 For a selected review, see: Castanheiro T, Suffert J, Donnard M, Gulea M. Chem. Soc. Rev. 2016; 45: 494
    • 10a Qiu J, Wu D, Karmaker PG, Yin H, Chen F.-X. Org. Lett. 2018; 20: 1600
    • 10b See JY, Zhao Y. Org. Lett. 2018; 20: 7433
  • 11 Kadam SN, Ambhore AN, Hebade MJ, Kamble RD, Hese SV, Gaikwad MV, Gavhane PD, Dawane BS. Synlett 2018; 29: 1902
    • 12a Wu D, Qiu J, Karmaker PG, Yin H, Chen F.-X. J. Org. Chem. 2018; 83: 1576
    • 12b Wei W, Liao L, Qin T, Zhao X. Org. Lett. 2019; 21: 7846
  • 13 Song X.-F, Ye A.-H, Xie Y.-Y, Dong J.-W, Chen C, Zhang Y, Chen Z.-M. Org. Lett. 2019; 21: 9550
  • 14 Modi A, Ali W, Patel BK. Org. Lett. 2017; 19: 432
  • 15 Tao Z.-K, Li C.-K, Zhang P.-Z, Shoberu A, Zou J.-P, Zhang W. J. Org. Chem. 2018; 83: 2418

    • For selected examples, please see:
    • 16a Chen Y, Wang S, Jiang Q, Cheng C, Xiao X, Zhu G. J. Org. Chem. 2018; 83: 716
    • 16b Wu C, Lu L.-H, Peng A.-Z, Jia G.-K, Peng C, Cao Z, Tang Z, He W.-M, Xu X. Green Chem. 2018; 20: 3683
    • 16c Yuan P.-F, Zhang Q.-B, Jin X.-L, Lei W.-L, Wu L.-Z, Liu Q. Green Chem. 2018; 20: 5464
    • 16d Gao Y, Liu Y, Wan J.-P. J. Org. Chem. 2019; 84: 2243
    • 16e Li G, Yan Q, Gong X, Dou X, Yang D. ACS Sustainable Chem. Eng. 2019; 7: 14009
    • 16f Koohgard M, Hosseinpour Z, Sarvestani AM, Hosseini-Sarvari M. Catal. Sci. Technol. 2020; 10: 1401
    • 17a Nair V, George TG, Nair LG, Panicker SB. Tetrahedron Lett. 1999; 40: 1195
    • 17b Wu G, Liu Q, Shen Y, Wu W, Wu L. Tetrahedron Lett. 2005; 46: 5831
    • 17c Iranpoor N, Firouzabadi H, Nowrouzi N. Tetrahedron 2006; 62: 5498
    • 17d Pan X.-Q, Lei M.-Y, Zou J.-P, Zhang W. Tetrahedron Lett. 2009; 50: 347
    • 17e Zhang X.-Z, Ge D.-L, Chen S.-Y, Yu X.-Q. RSC Adv. 2016; 6: 66320
    • 17f Dey A, Hajra A. Adv. Synth. Catal. 2019; 361: 842
    • 17g Lu L.-H, Zhou S.-J, Sun M, Chen J.-L, Xia W, Yu X, Xu X, He W.-M. ACS Sustainable Chem. Eng. 2019; 7: 1574
    • 18a Yadav JS, Reddy BV. S, Shubashree S, Sadashiv K. Tetrahedron Lett. 2004; 45: 2951
    • 18b Yadav JS, Reddy BV. S, Reddy YJ. Chem. Lett. 2008; 37: 652
    • 18c Chen Q, Lei Y, Wang Y, Wang C, Wang Y, Xu Z, Wang H, Wang R. Org. Chem. Front. 2017; 4: 369

      For selected reviews, see:
    • 19a Enguehard-Gueiffier C, Gueiffier A. Mini-Rev. Med. Chem. 2007; 7: 888
    • 19b Bagdi AK, Santra S, Monir K, Hajra A. Chem. Commun. 2015; 51: 1555

      For selected reviews, see:
    • 20a Tashrifi Z, Mohammadi-Khanaposhtani M, Larijani B, Mahdavi M. Eur. J. Org. Chem. 2020; 269
    • 20b Bagdi AK, Hajra A. Org. Biomol. Chem. 2020; 18: 2611
    • 21a Mitra S, Ghosh M, Mishra S, Hajra A. J. Org. Chem. 2015; 80: 8275
    • 21b Yang D, Yan K, Wei W, Li G, Lu S, Zhao C, Tian L, Wang H. J. Org. Chem. 2015; 80: 11073
    • 21c Zhang H, Wei Q, Wei S, Qu J, Wang B. Eur. J. Org. Chem. 2016; 3373
    • 21d Zhu Y.-S, Xue Y, Liu W, Zhu X, Hao X.-Q, Song M.-P. J. Org. Chem. 2020; 85: 9106

      For selected reviews, see:
    • 22a Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
    • 22b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 22c Tang S, Liu Y, Lei A. Chem 2018; 4: 27
    • 22d Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 22e Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
    • 23a Yu Y, Yuan Y, Liu H, He M, Yang M, Liu P, Yu B, Dong X, Lei A. Chem. Commun. 2019; 55: 1809
    • 23b Yuan Y, Qiao J, Cao Y, Tang J, Wang M, Ke G, Lu Y, Liu X, Lei A. Chem. Commun. 2019; 55: 4230
    • 23c Yuan Y, Cao Y, Qiao J, Lin Y, Jiang X, Weng Y, Tang S, Lei A. Chin. J. Chem. 2019; 37: 49
    • 23d Zhou Z, Yuan Y, Cao Y, Qiao J, Yao A, Zhao J, Zuo W, Chen W, Lei A. Chin. J. Chem. 2019; 37: 611
    • 23e Wen J, Niu C, Yan K, Cheng X, Gong R, Li M, Guo Y, Yang J, Wang H. Green Chem. 2020; 22: 1129
    • 23f Kim YJ, Kim DY. Tetrahedron Lett. 2019; 60: 739
    • 23g Zhang J, Wang H, Chen Y, Xie H, Ding C, Tan J, Xu K. Chin. Chem. Lett. 2020; 31: 1576
    • 24a Liang S, Zeng C.-C, Tian H.-Y, Sun B.-G, Luo X.-G, Ren F.-Z. Adv. Synth. Catal. 2018; 360: 1444
    • 24b Wen J, Zhang L, Yang X, Niu C, Wang S, Wei W, Sun X, Yang J, Wang H. Green Chem. 2019; 21: 3597
    • 25a Liu P, Gao Y, Gu W, Shen Z, Sun P. J. Org. Chem. 2015; 80: 11559
    • 25b Gao Y, Lu W, Liu P, Sun P. J. Org. Chem. 2016; 81: 2482
    • 25c Chang Q, Liu Z, Liu P, Yu L, Sun P. J. Org. Chem. 2017; 82: 5391
    • 25d Zhang J, Xie S, Liu P, Sun P. Adv. Synth. Catal. 2020; 362: 2173
    • 26a Gitkis A, Becker JY. Electrochim. Acta 2010; 55: 5854
    • 26b Fotouhi L, Nikoofar K. Tetrahedron Lett. 2013; 54: 2903
    • 26c Kokorekin VA, Sigacheva VL, Petrosyan VA. Tetrahedron Lett. 2014; 55: 4306
    • 26d Zhang X, Wang C, Jiang H, Sun L. RSC Adv. 2018; 8: 22042
  • 27 2-Phenylimidazo[1,2-a]pyridin-3-yl Thiocyanate (3a):21a Typical Procedure An undivided 25 mL three-necked flask was charged with 2-phenylimidazo[1,2-a]pyridine (1a, 38.8 mg, 0.2 mmol), NH4SCN (2a, 30.5 mg, 0.4 mmol, 2 equiv), Bu4NPF6 (194 mg, 0.5 mmol, 2.5 equiv), and MeCN (10 mL). The flask was equipped with two platinum plate electrodes (10 × 10 mm) as the anode and cathode, respectively. The reaction mixture was electrolyzed and stirred at a constant current (5 mA) under air at r.t. for 6 h. When the reaction was complete, the mixture was diluted with H2O (30 mL) and extracted with CH2Cl2 (3 × 10 mL). The combined organic phases were dried (Na2SO4), filtered, and concentrated in vacuo. The resulting crude product was purified by chromatography [silica gel, PE–EtOAc (5:1)] to give a white solid; yield: 42.7 mg (85%); mp 115–117 °C. 1H NMR (400 MHz, CDCl3): δ = 8.48 (d, J = 6.6 Hz, 1 H), 8.08 (d, J = 7.3 Hz, 2 H), 7.80 (d, J = 8.9 Hz, 1 H), 7.58–7.48 (m, 4 H), 7.16 (t, J = 6.7 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 153.0, 147.9, 131.9, 129.5, 128.8, 128.8, 128.1, 124.4, 118.3, 114.5, 108.2, 94.7.