Planta Med 2021; 87(01/02): 101-112
DOI: 10.1055/a-1320-4556
Natural Product Chemistry and Analytical Studies
Original Papers

Time-Scale Shifting of Volatile Semiochemical Levels in Wild Type Lychnophora ericoides (Brazilian arnica) and Pollinator Records

Daniel Petinatti Pavarini
1   Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
João Semir†,*
2   Instituto de Biologia, Departamento de Botânica, Universidade Estadual de Campinas, Campinas, SP, Brazil
,
João Luís Callegari Lopes
1   Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
Ricardo Roberto da Silva
1   Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
1   Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
› Author Affiliations
Supported by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico
Supported by: Fundação de Amparo à Pesquisa do Estado de São Paulo

Abstract

Lychnophora ericoides is a Brazilian folk phytomedicine from Cerradoʼs “campus rupestris”. Its volatile organic compounds includes bisabolene-derivatives as major compounds. Herein we provide the chemical profiling of constitutive volatile sesquiterpenes from L. ericoides leaves, timeframe emissions surveys, and pollinators records. In situ samples of L. ericoides were harvested. A headspace-solid phase micro extraction method of pre-concentration was optimized. Identification was done through GC-MS. Isolation and structural elucidation were performed whenever necessary. Pollinators were registered in pictures and video. Short time-series and harmonic regressions determined rhythms of single compounds, and average chromatographic signal area was used to determine mono and sesquiterpene rhythms. Concluding, optimized headspace-solid phase micro extraction method of terpenes level analysis was reached. α-Pinene, β-pinene, α-terpinene, para-cymene, limonene, γ-terpinene, terpinen-4-ol, dehydro-sesquicineole, and β-guaiene were identified using GC-MS data. 11-dehydro cadinol and ortho-acetoxy bisabolol were elucidated. Sesquiterpenes concentrations were higher due to temperature rise, lower leaf age, and flowering seasons. Harmonic regressions determined that daylight might control levels of terpenes. Hummingbird, hemiptera insects, and wasps were recorded visiting Compositae capitulum for the first time. We studied nondomestic plants from in situ conditions and concluded that bisabolene-derivative levels were more abundant than monoterpenes during flowering throughout the summer.

†,* in memoriam


Supporting Information



Publication History

Received: 15 June 2020

Accepted: 20 November 2020

Article published online:
04 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nelson CJ, Millar AH. Protein turnover in plant biology. Nat Plants 2015; 1: 15017
  • 2 Hall R, Beale M, Fiehn O, Hardy N, Sumner LW, Bino R. Plant metabolomics the missing link in functional genomics strategies. Plant Cell 2002; 14: 1437-1440
  • 3 Pilon AC, Selegato DM, Fernandes RP, Bueno PCP, Pinho DR, Carnevale-Neto F, Freire RT, Castro-Gamboa I, Bolzani VS, Lopes NP. Metabolômica de plantas: Métodos e desafios. Quim Nova 2020; 43: 329-354
  • 4 The Plant List. A working list of all known plant species. Accessed November 12, 2020 at: http://www.theplantlist.org/
  • 5 Nakajima JN, Dematteis M, Louilliet B, Teles AM, Heiden G, Borges RAX, Rivera VL. Asteraceae. In: Martinelli G, Moraes MA. eds. Livro Vermelho da Flora do Brasil. Rio de Janeiro: Instituto de Pesquisa do Jardim Botânico do Rio de Janeiro; 2013: 203-286
  • 6 Gottlieb OR. Micromolecular Evolution, Systematics and Ecology. An Essay into a novel botanical Discipline. Heidelberg: Springer; 1982: 94
  • 7 Semir J, Rezende AR, Borges M, Lopes NP. As arnicas endêmicas das serras do Brasil. Ouro Preto: Editora UFOP; 2011: 211
  • 8 Pavarini DP, Callejon DR, Soares DM, Nogueira EF, de Souza GEP, Cunha FQ, Lopes NP, Lopes JLC. Novel bisabolane derivative from “Arnica-da-Serra” (Vernonieae: Asteraceae) reduces pro-nociceptive cytokines levels in LPS-stimulated rat macrophages. J Ethnopharmcol 2013; 148: 993-998
  • 9 Keles LC, Melo NI, Aguiar GP, Wakabayashi KAL, Carvalho CE, Cunha WR, Crotti AEM, Lopes JLC, Lopes NP. Lychnophorinae (Asteraceae): a survey of its chemical constituents and biological activities. Quim Nova 2010; 33: 2245-2260
  • 10 Sousa OV, Dutra RC, Yamamoto CH, Pimenta DS. Comparative study of the chemical composition of essential oils from the leaves of Eremanthus erythropappus (DC) McLeisch. Rev Bras Farmacogn 2008; 89: 113-116
  • 11 Baldin ELL, Pavarini DP, Souza ES, Silva JPGF, Souza GHB, Lopes NP, Lopes JLC. Towards new botanical pesticides: the toxic effect of Eremanthus goyazensis (Asteraceae) leaves essential oil against Brevipalpus phoenicis (Acari: Tenuipalpidae). Quim Nova 2012; 35: 2254-2257
  • 12 Bohlmann F, Zdero C, King RM, Robinson H. Seven guaianolides from the tribe Vernonieae. Phytochemistry 1980; 19: 2669-2673
  • 13 Curado MA, Oliveira CBA, Jesus JG, Santos SC, Seraphin JC, Ferri PH. Environmental factors influence on chemical polymorphism of the essential oils of Lychnophora ericoides . Phytochemistry 2006; 67: 2363-2369
  • 14 Brunetti AE, Carnevale Neto F, Vera MC, Taboada C, Pavarini DP, Bauermeister A, Lopes NP. An integrative omics perspective for the analysis of chemical signals in ecological interactions. Chem Soc Rev 2018; 47: 1574-1591
  • 15 Degenhardt J, Köllner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009; 70: 1621-1637
  • 16 Godard KA, Byun-Mckay A, Levasseur C, Plant A, Séguin A, Bohlmann J. Testing of a heterologous, wound- and insect-inducible promoter for functional genomics studies in conifer defense. Plant Cell Rep 2007; 26: 2083-2090
  • 17 Muhlemann JK, Klempien A, Dudareva N. Floral volatiles: from biosynthesis to function. Plant Cell Environ 2014; 37: 1936-1949
  • 18 Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci U S A 2005; 102: 933-938
  • 19 Dicke M, Baldwin IT. The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help”. Trends in Plant Sci 2010; 15: 167-175
  • 20 Harley P, Vasconcellos P, Vierling L, Pinheiro CCDS, Greenberg J, Guenther A, Klinger L, De Almeida SS, Neill D, Baker T, Phillips O, Malhi Y. Variation in potential for isoprene emissions among Neotropical forest sites. Glob Chang Biol 2004; 10: 630-650
  • 21 Bicchi C, Cagliero C, Rubiolo P. New trends in the analysis of the volatile fraction of matrices of vegetable origin: a short overview. A review. Flavour Fragr J 2011; 26: 321-325
  • 22 Cagliero C, Sgorbini B, Cordero C, Liberto E, Bicchi C, Rubiolo P. Analytical Strategies for multipurpose Studies of a Plant volatile Fraction. In: Meyers RA. ed. Encyclopedia of analytical Chemistry: Applications, Theory and Instrumentation. Redondo Beach: Wiley & Sons; 2006: 1-20
  • 23 Adams RP. Identification Oil Components by Gas Chromatography-Mass Spectroscopy, 4th edition. Carol Stream: Allured Publishing; 2007
  • 24 Helmig D, Ortega J, Guenther A, Herrick J, Geron C. Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US. Atmos Environ 2006; 40: 4150-4157
  • 25 Loivamäki M, Louis S, Cinege G, Zimmer I, Fischbach RJ, Schnitzler JP. Circadian rhythms of isoprene biosynthesis in grey poplar leaves. Plant Physiol 2007; 143: 540-551
  • 26 Ishara KL, Maimoni-Rodella RCS. Pollination and dispersal systems in a Cerrado remnant (Brazilian Savanna) in southeastern Brazil. Braz Arch Biol Technol 2011; 54: 629-642
  • 27 Freitas L, Sazima M. Pollination biology in a tropical high-altitude grassland in brazil: interactions at the community level. Ann Mo Bot Gard 2006; 93: 465-516
  • 28 Machado CG, Coelho AG, Santana CS, Rodrigues M. Hummingbirds and their flowers in the “campos rupestres” of Chapada Diamantina, Bahia, northeastern Brazil. Rev Bras Ornitol 2007; 15: 267-279
  • 29 Duhl TR, Helmig D, Guenther A. Sesquiterpene emissions from vegetation: a review. Biogeosciences 2008; 5: 761-777
  • 30 Hansen U, Günther S. Temperature and light dependence of β-caryophyllene emission rates. J Geophys Res Atmos 2003; 108: 4801-4808
  • 31 Ibrahim MA, Mäenpää M, Hassinen V, Kontunen-Soppela S, Malec L, Rousi M, Pietkäinen L, Tervahauta A, Kärenlampi S, Holopainen JK, Oksanen EJ. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula . J Exp Bot 2010; 61: 1583-1595
  • 32 Niinemets Ü, Sun Z. How light, temperature, and measurement and growth [CO2]. interactively control isoprene emission in hybrid aspen. J Exp Bot 2015; 66: 841-851
  • 33 Verdonk JC, de Vos CHR, Verhoeven HA, Haring MA, van Tunen AJ, Schuurink RC. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 2003; 62: 997-1008
  • 34 Aros D, Gonzalez V, Allemann RK, Müller CT, Rosati C, Rogers HJ. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. J Exp Bot 2012; 63: 2739-2752
  • 35 Maia-Almeida CI, Ming LC, Paron ME, Martins ER, Cavariani C, de Castro Tavares R, Silva J. Genetic erosion risk by environmental and antropic factor applied on strategies for Lychnophora ericoides conservation. J Med Plant Res 2012; 6: 4024-4031
  • 36 Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH, Chen DF, Chen XY. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol Plant 2015; 8: 98-110
  • 37 Schiestl FP. Ecology and evolution of floral volatile-mediated information transfer in plants. New Phytol 2015; 206: 571-577
  • 38 Klahre U, Gurba A, Hermann K, Saxenhofer M, Bossolini E, Guerin PM, Kuhlemeier C. Pollinator choice in Petunia depends on two major genetic loci for floral scent production. Curr Biol 2011; 21: 730-739
  • 39 Armenta S, Garrigues S, De La Guardia M. Green analytical chemistry. Trends Analyt Chem 2008; 27: 497-511
  • 40 Weng JK. The evolutionary paths towards complexity: a metabolic perspective. New Phytol 2014; 201: 1141-1149
  • 41 Pennington RT, Lavin M, Oliveira-Filho A. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Ann Rev Ecol Evol Syst 2009; 40: 437-457
  • 42 Kim J, Kim JH. Difference-based clustering of short time-course microarray data with replicates. BMC Bioinformatics 2007; 8: 253-264
  • 43 Yang R, Su Z. Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation. Bioinformatics 2010; 26: 68-74
  • 44 Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. New York: Springer; 2000
  • 45 R Core Team. R: A Language and Environment for Statistical Computing, N/A edition. Vienna: R Foundation for Statistical Computing; 2014. Accessed May 7, 2015 at: http://www.R-project.org/