Planta Med 2021; 87(01/02): 6-23
DOI: 10.1055/a-1320-4610
Biological and Pharmacological Activities
Reviews

The Potential of Biologically Active Brazilian Plant Species as a Strategy to Search for Molecular Models for Mosquito Control

1   Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), Institute of Physics of São Carlos, University of São Paulo (USP), São Carlos, Brazil
,
2   Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
,
3   Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
,
3   Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
,
3   Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
,
1   Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), Institute of Physics of São Carlos, University of São Paulo (USP), São Carlos, Brazil
,
3   Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
,
2   Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
› Author Affiliations
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico
Supported by: Fundação de Empreendimentos Científicos e Tecnológicos 120/2017
Supported by: Fundação de Amparo à Pesquisa do Estado de São Paulo 2013/07600-3
Supported by: Fundação de Amparo à Pesquisa do Estado de São Paulo 2014/50926-0
Supported by: Fundação de Amparo à Pesquisa do Estado de São Paulo 2019/05967-3

Abstract

Natural products are a valuable source of biologically active compounds and continue to play an important role in modern drug discovery due to their great structural diversity and unique biological properties. Brazilian biodiversity is one of the most extensive in the world and could be an effective source of new chemical entities for drug discovery. Mosquitoes are vectors for the transmission of dengue, Zika, chikungunya, yellow fever, and many other diseases of public health importance. These diseases have a major impact on tropical and subtropical countries, and their incidence has increased dramatically in recent decades, reaching billions of people at risk worldwide. The prevention of these diseases is mainly through vector control, which is becoming more difficult because of the emergence of resistant mosquito populations to the chemical insecticides. Strategies to provide efficient and safe vector control are needed, and secondary metabolites from plant species from the Brazilian biodiversity, especially Cerrado, that are biologically active for mosquito control are herein highlighted. Also, this is a literature revision of targets as insights to promote advances in the task of developing active compounds for vector control. In view of the expansion and occurrence of arboviruses diseases worldwide, scientific reviews on bioactive natural products are important to provide molecular models for vector control and contribute with effective measures to reduce their incidence.



Publication History

Received: 26 June 2020

Accepted after revision: 21 November 2020

Article published online:
21 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83: 770-803
  • 2 Saldivar-Gonzalez FI, Valli M, Andricopulo AD, da Silva Bolzani V, Medina-Franco JL. Chemical space and diversity of the NuBBE database: A chemoinformatic characterization. J Chem Inf Model 2019; 59: 74-85
  • 3 Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature 2000; 403: 853-858
  • 4 Eiten G. Cerrado: Caracterização, Ocupação e Perspectivas. In: Pinto MN. ed. Vegetação do Cerrado. Brasília: Editora da Universidade de Brasília; 1994: 17-73
  • 5 Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci U S A 2009; 106: 20359-20364
  • 6 Machado R, Neto M, Pereira P, Caldas E, Gonçalves D, Santos N, Tabor K, Steininger M. Estimativas de perda da área do Cerrado brasileiro. Brasília, DF: Conservação Internacional; 2004
  • 7 Flausino O, Valli M, Bolzani V. Biodiversidade brasileira: uma fonte potencial de agentes terapêuticos ainda inexplorada. In: Yunes R, Cechinel Filho V. eds. Química de produtos naturais: novos fármacos e a moderna farmacognosia. 3rd ed.. Itajaí: Univali; 2012: 353-383
  • 8 Pilon AC, Valli M, Dametto AC, Pinto MEF, Freire RT, Castro-Gamboa I, Andricopulo AD, Bolzani VS. NuBBEDB: an updated database to uncover chemical and biological information from Brazilian biodiversity. Sci Rep 2017; 7: 7215
  • 9 Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020; 5: 796-812
  • 10 Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Burkot TR, Harbach RE, Hay SI. A global map of dominant malaria vectors. Parasit Vectors 2012; 5: 69
  • 11 Dunphy BM, Kovach KB, Gehrke EJ, Field EN, Rowley WA, Bartholomay LC, Smith RC. Long-term surveillance defines spatial and temporal patterns implicating Culex tarsalis as the primary vector of West Nile virus. Sci Rep 2019; 9: 6637
  • 12 Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, de Lamballerie X. Chikungunya in the Americas. Lancet 2014; 383: 514
  • 13 Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G, Schaffner F, Elyazar IR, Teng HJ, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, Wint GR, Golding N, Hay SI. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus . Elife 2015; 4: e08347
  • 14 Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. Lancet 2019; 393: 350-363
  • 15 WHO. Dengue and severe dengue. Accessed May 30, 2020 at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
  • 16 Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 2012; 6: e1760
  • 17 Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. The global distribution and burden of dengue. Nature 2013; 496: 504-507
  • 18 PAHO. Casos reportados de dengue en las Américas. Accessed May 30, 2020 at: https://www.paho.org/data/index.php/es/temas/indicadores-dengue/dengue-nacional/9-dengue-pais-ano.html
  • 19 WHO. Zika virus. Accessed May 30, 2020 at: https://www.who.int/en/news-room/fact-sheets/detail/zika-virus
  • 20 Brasil P, Pereira JP, Moreira ME, Ribeiro Nogueira RM, Damasceno L, Wakimoto M, Rabello RS, Valderramos SG, Halai UA, Salles TS, Zin AA, Horovitz D, Daltro P, Boechat M, Raja Gabaglia C, Carvalho de Sequeira P, Pilotto JH, Medialdea-Carrera R, Cotrim da Cunha D, Abreu de Carvalho LM, Pone M, Machado Siqueira A, Calvet GA, Rodrigues Baiao AE, Neves ES, Nassar de Carvalho PR, Hasue RH, Marschik PB, Einspieler C, Janzen C, Cherry JD, Bispo de Filippis AM, Nielsen-Saines K. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med 2016; 375: 2321-2334
  • 21 WHO. Chikungunya. Accessed May 30, 2020 at: https://www.who.int/news-room/fact-sheets/detail/chikungunya
  • 22 Guy B, Briand O, Lang J, Saville M, Jackson N. Development of the Sanofi Pasteur tetravalent dengue vaccine: One more step forward. Vaccine 2015; 33: 7100-7111
  • 23 Guy B, Jackson N. Dengue vaccine: hypotheses to understand CYD-TDV-induced protection. Nat Rev Microbiol 2016; 14: 45-54
  • 24 WHO. Questions and Answers on Dengue Vaccines. Accessed May 30, 2020 at: https://www.who.int/immunization/research/development/dengue_q_and_a/en/
  • 25 WHO. Neglected tropical diseases. Accessed May 30, 2020 at: https://www.who.int/neglected_diseases/en/
  • 26 Barbosa PBB, Oliveira JM, Chagas JM, Rabelo LMA, Medeiros GF, Giodani RB, Silva EA, Uchôa AF, Ximenes MFF. Evaluation of seed extracts from plants found in the Caatinga biome for the control of Aedes aegypti . Parasitol Res 2014; 113: 3565-3580
  • 27 Ministério da Saúde. Fundação Nacional de Saúde. Manual de vigilância epidemiológica de febre amarela. Brasília, DF: Ministério da Saúde: Fundação Nacional de Saúde; 2004. Accessed December 15 2020 at: https://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_epid_febre_amarela.pdf
  • 28 Porto KR, Roel AR, Silva MM, Coelho RM, Scheleder EJ, Jeller AH. Atividade larvicida do óleo de Anacardium humile Saint Hill sobre Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae). Rev Bras Med Trop 2008; 41: 586-589
  • 29 de Mendonca FA, da Silva KF, dos Santos KK, Ribeiro Júnior KA, SantʼAna AE. Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti . Fitoterapia 2005; 76: 629-636
  • 30 de Carvalho GHF, de Andrade MA, de Araujo CN, Santos ML, de Castro NA, Charneau S, Monnerat R, de Santana JM, Bastos IMD. Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors. Environ Sci Pollut Res Int 2019; 26: 5514-5523
  • 31 Souza TM, Farias DF, Soares BM, Viana MP, Lima GPG, Machado LKA, Morais SM, Carvalho AFU. Toxicity of Brazilian plant seed extracts to two strains of Aedes aegypti (Diptera: Culicidae) and nontarget animals. J Med Entomol 2011; 48: 846-851
  • 32 Napoleao TH, Pontual EV, de Albuquerque Lima T, de Lima Santos ND, Sá RA, Coelho LC, do Amaral Ferraz Navarro DM, Paiva PM. Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae. Parasitol Res 2012; 110: 609-616
  • 33 Silva AG, Almeida DL, Ronchi SN, Bento AC, Scherer R, Ramos AC, Cruz ZM. The essential oil of Brazilian pepper, Schinus terebinthifolia Raddi in larval control of Stegomyia aegypti (Linnaeus, 1762). Parasit Vectors 2010; 3: 79
  • 34 Santos CCS, Araujo SS, Santos ALLM, Almeida ECV, Dias AS, Damascena NP, Santos DM, Santos MIS, Júnior KALR, Pereira CKB, Lima ACB, Shan AYKV, Santʼana AEG, Estevam CS, Araujo BS. Evaluation of the toxicity and molluscicidal and larvicidal activities of Schinopsis brasiliensis stem bark extract and its fractions. Rev Bras Farmacogn 2014; 24: 298-303
  • 35 de Omena MC, Navarro DMAF, de Paula JE, Luna JS, de Lima MRF, SantʼAna AEG. Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresour Technol 2007; 98: 2549-2556
  • 36 Grzybowski A, Tiboni M, Silva MA, Chitolina RF, Passos M, Fontana JD. Synergistic larvicidal effect and morphological alterations induced by ethanolic extracts of Annona muricata and Piper nigrum against the dengue fever vector Aedes aegypti . Pest Manag Sci 2013; 69: 589-601
  • 37 Rodrigues AM, Silva AAS, Pinto CCC, Lima Dos Santos D, Carneiro de Freitas JC, Martins VEP, Maia de Morais S. Larvicidal and enzymatic inhibition effects of Annona muricata seed extract and main constituent annonacin against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Pharmaceuticals (Basel) 2019; 12: 112
  • 38 Simas NK, Dellamora EDL, Schripsema J, Lage CLS, de Oliveira AM, Wessjohann L, Porzel A, Kuster RM. Acetylenic 2-phenylethylamides and new isobutylamides from Acmella oleracea (L.) R. K. Jansen, a Brazilian spice with larvicidal activity on Aedes aegypti . Phytochem Lett 2013; 6: 67-72
  • 39 Lavor PL, Santiago GMP, Gois RWD, de Sousa LM, Bezerra GD, Romero NR, Arriaga AMC, Lemos TLG, Alves PB, Gomes PCS. Larvicidal activity against Aedes aegypti of essential oils from northeast Brazil. Nat Prod Commun 2012; 7: 1391-1392
  • 40 Botas GDS, Cruz RAS, de Almeida FB, Duarte JL, Araujo RS, Souto RNP, Ferreira R, Carvalho JCT, Santos MG, Rocha L, Pereira VLP, Fernandes CP. Baccharis reticularia DC. and limonene nanoemulsions: Promising larvicidal agents for Aedes aegypti (Diptera: Culicidae) control. Molecules 2017; 22: 1990
  • 41 Marques MM, Morais SM, Vieira IG, Vieira MG, Raquel A, Silva A, De Almeida RR, Guedes MI. Larvicidal activity of Tagetes erecta against Aedes aegypti . J Am Mosq Control Assoc 2011; 27: 156-158
  • 42 Garcez WS, Garcez FR, da Silva LMGE, Hamerski L. Larvicidal activity against Aedes aegypti of some plants native to the West-Central region of Brazil. Bioresour Technol 2009; 100: 6647-6650
  • 43 Borges JCM, Silva EAP e, de Barros TCA, Soares IM, Ascêncio SD, Fidelis RR, de Souza Aguiar RW. Chemical composition, oviposition deterrent and larvicidal activities of the wood extracts of Tabebuia avellanedae from the Cerrado of Brazil. J Med Plant Res 2018; 12: 404-414
  • 44 Costa JGM, Pessoa ODL, Menezes EA, Santiago GMP, Lemos TLG. Composition and larvicidal activity of essential oils from heartwood of Auxemma glazioviana Taub. (Boraginaceae). Flavour Frag J 2004; 19: 529-531
  • 45 Santos RP, Nunes EP, Nascimento RF, Santiago GMP, Menezes GHA, Silveira ER, Pessoa ODL. Chemical composition and larvicidal activity of the essential oils of Cordia leucomalloides and Cordia curassavica from the northeast of Brazil. J Brazil Chem Soc 2006; 17: 1027-1030
  • 46 de Menezes JESA, Lemos TLG, Silveira ER, Pessoa ODL, Santiago GMP. Chemical composition and larvicidal activity of the essential oil from leaves of Cordia globosa (Jacq.) HBK from northeastern Brazil. J Essent Oil Res 2006; 18: 253-255
  • 47 da Silva RC, Milet-Pinheiro P, Bezerra da Silva PC, da Silva AG, da Silva MV, Navarro DM, da Silva NH. (E)-caryophyllene and alpha-humulene: Aedes aegypti oviposition deterrents elucidated by gas chromatography-electrophysiological assay of Commiphora leptophloeos leaf oil. PLoS One 2015; 10: e0144586
  • 48 Oliveira PV, Ferreira JC, Moura FS, Lima GS, de Oliveira FM, Oliveira PE, Conserva LM, Giulietti AM, Lemos RP. Larvicidal activity of 94 extracts from ten plant species of northeastern of Brazil against Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 2010; 107: 403-407
  • 49 de Lima GP, de Souza TM, de Paula Freire G, Farias DF, Cunha AP, Ricardo NM, de Morais SM, Carvalho AF. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res 2013; 112: 1953-1958
  • 50 Morais SM, Cavalcanti ESB, Bertini LM, Oliveira CLL, Rodrigues JRB, Cardoso JHL. Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J Am Mosq Control Assoc 2006; 22: 161-164
  • 51 Doria GA, Silva WJ, Carvalho GA, Alves PB, Cavalcanti SC. A study of the larvicidal activity of two Croton species from northeastern Brazil against Aedes aegypti . Pharm Biol 2010; 48: 615-620
  • 52 Santos GK, Dutra KA, Lira CS, Lima BN, Napoleao TH, Paiva PM, Maranhao CA, Brandao SS, Navarro DM. Effects of Croton rhamnifolioides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity. Molecules 2014; 19: 16573-16587
  • 53 Torres MC, Assuncao JC, Santiago GM, Andrade-Neto M, Silveira ER, Costa-Lotufo LV, Bezerra DP, Marinho Filho JD, Viana FA, Pessoa OD. Larvicidal and nematicidal activities of the leaf essential oil of Croton regelianus . Chem Biodivers 2008; 5: 2724-2728
  • 54 Carvalho Kda S, Silva SL e, de Souza IA, Gualberto SA, da Cruz RC, Dos Santos FR, de Carvalho MG. Toxicological evaluation of essential oil from the leaves of Croton tetradenius (Euphorbiaceae) on Aedes aegypti and Mus musculus . Parasitol Res 2016; 115: 3441-3448
  • 55 Farias DF, Cavalheiro MG, Viana MP, Queiroz VA, Rocha-Bezerra LCB, Vasconcelos IM, Morais SM, Carvalho AFU. Water extracts of Brazilian leguminous seeds as rich sources of larvicidal compounds against Aedes aegypti L. An Acad Bras Ciênc 2010; 82: 585-594
  • 56 Trindade FTT, Stabeli RG, Pereira AA, Facundo VA, Silva ADE. Copaifera multijuga ethanolic extracts, oil-resin, and its derivatives display larvicidal activity against Anopheles darlingi and Aedes aegypti (Diptera: Culicidae). Rev Bras Farmacogn 2013; 23: 464-470
  • 57 Dalarmi L, da Silva CB, Ocampos FMM, Burci LM, do Nascimento KF, de Jesus C, Dias JdFG, Miguel MD, Miguel OG, Zanin SMW. Larvicidal activity of Dalbergia brasiliensis (Fabaceae – Papilionoideae) on Aedes aegypti . Afr J Pharm Pharmaco 2018; 9: 881-885
  • 58 Gusmao DS, Pascoa V, Mathias L, Curcino Vieira IJ, Braz-Filho R, Alves Lemos FJ. Derris (Lonchocarpus) urucu (Leguminosae) extract modifies the peritrophic matrix structure of Aedes aegypti (Diptera: Culicidae). Mem Inst Oswaldo Cruz 2002; 97: 371-375
  • 59 Aguiar JC, Santiago GM, Lavor PL, Veras HN, Ferreira YS, Lima MA, Arriaga AM, Lemos TL, Lima JQ, de Jesus HC, Alves PB, Braz-Filho R. Chemical constituents and larvicidal activity of Hymenaea courbaril fruit peel. Nat Prod Commun 2010; 5: 1977-1980
  • 60 Porto KRA, Motti PR, Yano M, Roel AR, Cardoso CAL, Matias R. Screening of plant extracts and fractions on Aedes aegypti larvae found in the state of Mato Grosso do Sul (linnaeus, 1762) (culicidae). An Acad Bras Ciênc 2017; 8: 895-906
  • 61 Arriaga AM, Lima JQ, Vasconcelos JN e, de Oliveira MC, Lemos TL, Fonseca AM, Malcher GT, Santiago GM, Mafezoli J, Braz-Filho R. Antioxidant and larvicidal activities of Tephrosia egregia Sandw against Aedes aegypti . Nat Prod Commun 2009; 4: 529-530
  • 62 Costa JGM, Rodrigues FFG, Angélico EC, Silva MR, Mota ML, Santos NKA, Cardoso ALH, Lemos TLG. Estudo químico-biológico dos óleos essenciais de Hyptis martiusii, Lippia sidoides e Syzigium aromaticum frente às larvas do Aedes aegypti . Rev Bras Farmacogn 2005; 15: 304-309
  • 63 Silva WJ, Doria GA, Maia RT, Nunes RS, Carvalho GA, Blank AF, Alves PB, Marcal RM, Cavalcanti SC. Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Bioresour Technol 2008; 99: 3251-3255
  • 64 Ricarte LP, Bezerra GP, Romero NR, Silva HCD, Lemos TLG, Arriaga AMC, Alves PB, Santos MBD, Militao GCG, Silva TDS, Braz-Filho R, Santiago GMP. Chemical composition and biological activities of the essential oils from Vitex-agnus castus, Ocimum campechianum and Ocimum carnosum . An Acad Bras Cienc 2020; 92: e20180569
  • 65 Azevedo SG, Mar JM, da Silva LS, Franca LP, Machado MB, Tadei WP, Bezerra JD, dos Santos AL, Sanches EA. Bioactivity of Licaria puchury-major essential oil against Aedes aegypti, Tetranychus urticae and Cerataphis lataniae . Rec Nat Prod 2018; 12: 229-239
  • 66 da Silva HHG, Geris R, Rodrigues E, Rocha C, da Silva IG. Larvicidal activity of oil-resin fractions from the Brazilian medicinal plant Copaifera reticulata Ducke (Leguminosae-Caesalpinoideae) against Aedes aegypti (Diptera, Culicidae). Rev Soc Bras Med Trop 2007; 40: 264-267
  • 67 Gois RWD, de Sousa LM, Lemos TLG, Arriaga AMC, Andrade-Neto M, Santiago GMP, Ferreira YS, Alves PB, de Jesus HCR. Chemical composition and larvicidal effects of essential oil from Bauhinia acuruana (Moric) againstAedes aegypti. . J Essent Oil Res 2011; 23: 59-62
  • 68 dos Santos EA, de Carvalho CM, Costa ALS, Conceicao AS, Moura FDP, Santana AEG. Bioactivity evaluation of plant extracts used in indigenous medicine against the snail, Biomphalaria glabrata, and the larvae of Aedes aegypti . Evid Based Complement Alternat 2012; 2012: 846583
  • 69 Ferreira MDL, Fernandes DA, Nunes FC, Teles YCF, Rolim YM, da Silva CM, de Albuquerque JBL, Agra MF, de Souza MFV. Phytochemical study of Waltheria viscosissima and evaluation of its larvicidal activity against Aedes aegypti . Rev Bras Farmacogn 2019; 29: 582-590
  • 70 Ferreira MR, Santiago RR, de Souza TP, Egito ES, Oliveira EE, Soares LA. Development and evaluation of emulsions from Carapa guianensis (Andiroba) oil. AAPS PharmSciTech 2010; 11: 1383-1390
  • 71 Sarmento UC, Miguita CH, Almeida LH, Gaban CR, Silva LM, Souza AS, Garcez WS, Garcez FR. Larvicidal efficacies of plants from Midwestern Brazil: melianodiol from Guarea kunthiana as a potential biopesticide against Aedes aegypti . Mem Inst Oswaldo Cruz 2016; 111: 469-474
  • 72 Magalhaes LAM, Lima MD, Marques MOM, Facanali R, Pinto ACD, Tadei WP. Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules 2010; 15: 5734-5741
  • 73 da Silva AG, Alves RCC, Filho CMB, Bezerra-Silva PC, dos Santos LMM, Foglio MA, Navarro DMDF, da Silva MV, Correia MTD. Chemical composition and larvicidal activity of the essential oil from leaves of Eugenia brejoensis Mazine (Myrtaceae). J Essent Oil Bear Pl 2015; 18: 1441-1447
  • 74 Neves ID, Rezende SRD, Kirk JM, Pontes EG, De Carvalho MG. Composition and larvicidal activity of essential oil of Eugenia candolleana DC. (MYRTACEAE) against Aedes aegypti . Rev Virtual Quim 2017; 9: 2305-2315
  • 75 Dias CN, Alves LP, Rodrigues KA, Brito MC, Rosa Cdos S, do Amaral FM, Monteiro Odos S, Andrade EH, Maia JG, Moraes DF. Chemical composition and larvicidal activity of essential oils extracted from Brazilian legal amazon plants against Aedes aegypti L. (Diptera: Culicidae). Evid Based Complement Alternat Med 2015; 2015: 490765
  • 76 Rosa CS, Veras KS, Silva PR, Lopes Neto JJ, Cardoso HLM, Alves LPL, Brito MCA, Amaral FMM, Maia JGS, Monteiro OS, Moraes DFC. Composição química e toxicidade frente Aedes aegypti L. e Artemia salina Leach do óleo essencial das folhas de Myrcia sylvatica (G. Mey.) DC. Rev Bras Pl Med 2016; 18: 19-26
  • 77 Mendes LA, Martins GF, Valbon WR, de Souza TD, Menini L, Ferreira A, Ferreira MFD. Larvicidal effect of essential oils from Brazilian cultivars of guava on Aedes aegypti L. Ind Crop Prod 2017; 108: 684-689
  • 78 Kanis LA, Antonio RD, Antunes EP, Prophiro JS, da Silva OS. Larvicidal effect of dried leaf extracts from Pinus caribaea against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Rev Soc Bras Med Trop 2009; 42: 373-376
  • 79 Oliveira GL, Cardoso SK, Lara CR, Vieira TM, Guimaraes EF, Figueiredo LS, Martins ER, Moreira DL, Kaplan MA. Chemical study and larvicidal activity against Aedes aegypti of essential oil of Piper aduncum L. (Piperaceae). An Acad Bras Cienc 2013; 85: 1227-1234
  • 80 da Silva MF, Bezerra-Silva PC, de Lira CS, de Lima Albuquerque BN, Agra Neto AC, Pontual EV, Maciel JR, Paiva PM, Navarro DM. Composition and biological activities of the essential oil of Piper corcovadensis (Miq.) C. DC (Piperaceae). Exp Parasitol 2016; 165: 64-70
  • 81 do Nascimento JC, David JM, Barbosa LC, de Paula VF, Demuner AJ, David JP, Conserva LM, Ferreira JC, Guimaraes EF. Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C. DC. (Piperaceae). Pest Manag Sci 2013; 69: 1267-1271
  • 82 Autran ES, Neves IA, da Silva CSB, Santos GKN, da Camara CAG, Navarro DMAF. Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresour Technol 2009; 100: 2284-2288
  • 83 Marques AM, Velozo LS, Carvalho MA, Serdeiro MT, Honorio NA, Kaplan MAC, Maleck M. Larvicidal activity of Ottonia anisum metabolites against Aedes aegypti: A potential natural alternative source for mosquito vector control in Brazil. J Vector Dis 2017; 54: 61-68
  • 84 Cavalcanti ESB, de Morais SM, Lima MAA, Santana EWP. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz 2004; 99: 541-544
  • 85 Arriaga AMC, Rodrigues FEA, Lemos TLG, de Oliveira MDF, Lima JQ, Santiago GMP, Braz-Filho R, Matezoli J. Composition and larvicidal activity of essential oil from Stemodia maritima L. Nat Prod Commun 2007; 2: 1237-1239
  • 86 Ferreira RMDA, Dʼhaveloose NP, Cruz RAS, Araújo RS, Carvalho JCT, Rocha L, Fernandes LP, Da Costa TS, Fernandes CP, Souto RNP. Nano-emulsification enhances the larvicidal potential of the essential oil of Siparuna guianensis (Laurales: Siparunaceae) against Aedes (Stegomyia) aegypti (Diptera: Culicidae). J Med Entomol 2020; 57: 788-796
  • 87 Avelar Amado P, Fonseca Castro AH, Nunes Alves S, Brentan Silva D, Alexandre Carollo C. Alves Rodrigues Dos Santos Lima L. Phenolic compounds: antioxidant and larvicidal potential of Smilax brasiliensis Sprengel leaves. Nat Prod Res 2019; 17: 2545-2553
  • 88 Santiago GMP, Lemos TLG, Pessoa ODL, Arriaga AMC, Matos FJA, Lima MAS, Santos HS, Lima DCL, Barbosa FG, Luciano JHS, Silveira ER, de Menezes GHA. Larvicidal activity against Aedes aegypti L. (Diptera: Culicidae) of essential oils of Lippia species from Brazil. Nat Prod Commun 2006; 1: 573-576
  • 89 Nascimento AMD, Maia TDS, Soares TES, Menezes LRA, Scher R, Costa EV, Cavalcanti SCH, La Corte R. Repellency and larvicidal activity of essential oils from Xylopia laevigata, Xylopia frutescens, Lippia pedunculosa, and their individual compounds against Aedes aegypti Linnaeus. Neotrop Entomol 2017; 46: 223-230
  • 90 Costa M, Pereira M, Oliveira S, Souza P, Dallʼoglio E, Alves T. Anonáceas provocam mortalidade em larvas de Aedes aegypti (Linnaeus, 1762) (Dipteria: Culidae). Rev Bras Biocienc 2013; 11: 184-190
  • 91 Costa MS, Santana AE, Oliveira LL, Zanuncio JC, Serrao JE. Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells. Pest Manag Sci 2017; 73: 636-640
  • 92 De Sousa FDM, Grossi SM, Monteiro GC, Demarque DP, Espindola LS. Dereplication and isolation of larvicidal compounds from annonaceae species against Aedes aegypti . Rev Bras Farmacogn 2020; 30: 123-126
  • 93 Rodrigues AMS, De Paula JE, Degallier N, Molez JE, Espindola LS. Larvicidal activity of some Cerrado plant extracts against Aedes aegypti . J Am Mosq Control Assoc 2006; 22: 314-317
  • 94 Borges RA, Cavasin GM, Silva IG, Arruda W, Oliveira ESF, Silva HHG, Martins F. Mortalidade e alterações morfológicas provocadas pela ação inibidora do diflubenzuron na ecdise de larvas de Aedes aegypti (Diptera, Culicidae). Rev Patol Trop 2004; 33: 91-105
  • 95 Barreto CF, Cavasin GM, Silva HHG, Silva IG. Estudo das alterações morfo-histológicas em larvas de Aedes aegypti (Diptera, Culicidae) submetidas ao extrato bruto etanólico de Sapindus saponaria Lin (Sapindaceae). Rev Patol Trop 2006; 35: 37-57
  • 96 Correia SJ, David JP, David JM. Secundary metabolites from species of Anacardiaceae. Quim Nova 2006; 29: 1287-1300
  • 97 Audi EA, Otobone F, Martins JV, Cortez DA. Preliminary evaluation of Kielmeyera coriacea leaves extract on the central nervous system. Fitoterapia 2002; 73: 517-519
  • 98 Coelho AAM, Paula JE, Espindola LS. Atividade larvicida de extratos vegetais sobre Aedes aegypti (L.) (Diptera: Culicidae), em condições de laboratório. Rev Entom Bras 2009; 4: 1-6
  • 99 Ma DL, Chan DSH, Leung CH. Molecular docking for virtual screening of natural product databases. Chem Sci 2011; 2: 1656-1665
  • 100 Andricopulo AD, Montanari CA. Structure-activity relationships for the design of small-molecule inhibitors. Mini Rev Med Chem 2005; 5: 585-593
  • 101 Ferreira LG, Andricopulo AD. From protein structure to small-molecules: recent advances and applications to fragment-based drug discovery. Curr Top Med Chem 2017; 17: 2260-2270
  • 102 Ferreira LG, Oliva G, Andricopulo AD. From medicinal chemistry to human health: Current approaches to drug discovery for cancer and neglected tropical diseases. An Acad Bras Cienc 2018; 90: 645-661
  • 103 Chakraborty G, Shin J, Nguyen QT, Harikishore A, Baek K, Yoon HS. Solution structure of FK506-binding protein 12 from Aedes aegypti . Proteins 2012; 80: 2476-2481
  • 104 Rajan S, Saw KQ, Nguyen QT, Baek K, Yoon HS. High-resolution crystal structure of FKBP12 from Aedes aegypti . Protein Sci 2012; 21: 1080-1084
  • 105 Leite NR, Krogh R, Xu W, Ishida Y, Iulek J, Leal WS, Oliva G. Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “Lid”. PLoS One 2009; 4: e8006
  • 106 Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 2013; 58: 373-391
  • 107 Li S, Picimbon JF, Ji S, Kan Y, Chuanling Q, Zhou JJ, Pelosi P. Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti . Biochem Biophys Res Commun 2008; 372: 464-468
  • 108 Bohbot J, Pitts RJ, Kwon HW, Rutzler M, Robertson HM, Zwiebel LJ. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol Biol 2007; 16: 525-537
  • 109 Kim IH, Pham V, Jablonka W, Goodman WG, Ribeiro JMC, Andersen JF. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone. J Biol Chem 2017; 292: 15329-15339
  • 110 Calvo E, Mans BJ, Ribeiro JM, Andersen JF. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein. Proc Natl Acad Sci U S A 2009; 106: 3728-3733
  • 111 Petchampai N, Murillo-Solano C, Isoe J, Pizarro JC, Scaraffia PY. Distinctive regulatory properties of pyruvate kinase 1 from Aedes aegypti mosquitoes. Insect Biochem Mol Biol 2019; 104: 82-90
  • 112 Han Q, Robinson H, Ding H, Christensen BM, Li J. Evolution of insect arylalkylamine N-acetyltransferases: structural evidence from the yellow fever mosquito, Aedes aegypti . Proc Natl Acad Sci U S A 2012; 109: 11669-11674
  • 113 Han Q, Gao YG, Robinson H, Ding H, Wilson S, Li J. Crystal structures of Aedes aegypti kynurenine aminotransferase. FEBS J 2005; 272: 2198-2206
  • 114 Han Q, Robinson H, Gao YG, Vogelaar N, Wilson SR, Rizzi M, Li J. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase. J Biol Chem 2006; 281: 37175-37182
  • 115 Asad S, Hall-Mendelin S, Asgari S. Downregulation of Aedes aegypti chromodomain helicase DNA binding protein 7/Kismet by Wolbachia and its effect on dengue virus replication. Sci Rep 2016; 6: 36850
  • 116 Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR, Drane DR, Karunaratne SH, Hemingway J, Black WC, Ranson H. Genomic analysis of detoxification genes in the mosquito Aedes aegypti . Insect Biochem Mol Biol 2008; 38: 113-123
  • 117 Hurst R, Bao Y, Jemth P, Mannervik B, Williamson G. Phospholipid hydroperoxide glutathione peroxidase activity of human glutathione transferases. Biochem J 1998; 332 (Pt. 1): 97-100
  • 118 Lumjuan N, McCarroll L, Prapanthadara LA, Hemingway J, Ranson H. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti . Insect Biochem Mol Biol 2005; 35: 861-871
  • 119 Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R. Evolution of supergene families associated with insecticide resistance. Science 2002; 298: 179-181
  • 120 Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol 2005; 14: 3-8
  • 121 Lumjuan N, Stevenson BJ, Prapanthadara LA, Somboon P, Brophy PM, Loftus BJ, Severson DW, Ranson H. The Aedes aegypti glutathione transferase family. Insect Biochem Mol Biol 2007; 37: 1026-1035
  • 122 Lee HL, Chong WL. Glutathion S-transferase activity and DDT-susceptibility of Malaysian mosquitos. Southeast Asian J Trop Med Public Health 1995; 26: 164-167
  • 123 Prapanthadara LA, Promtet N, Koottathep S, Somboon P, Suwonkerd W, McCarroll L, Hemingway J. Mechanisms of DDT and permethrin resistance in Aedes aegypti from Chiang Mai, Thailand. Dengue Bull 2002; 26: 185-189
  • 124 Ranson H, Rossiter L, Ortelli F, Jensen B, Wang X, Roth CW, Collins FH, Hemingway J. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae . Biochem J 2001; 359: 295-304
  • 125 Wongtrakul J, Pongjaroenkit S, Leelapat P, Nachaiwieng W, Prapanthadara LA, Ketterman AJ. Expression and characterization of three new glutathione transferases, an epsilon (AcGSTE2-2), omega (AcGSTO1-1), and theta (AcGSTT1-1) from Anopheles cracens (Diptera: Culicidae), a major Thai malaria vector. J Med Entomol 2010; 47: 162-171
  • 126 Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E. The role of glutathione S-transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae). Pest Manag Sci 2001; 57: 501-508
  • 127 Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti . Pestic Biochem Phys 2012; 104: 126-131
  • 128 Armstrong R. Structure, catalytic mechanism, and evolution of the glutathione S-transferase. Chem Res Toxicol 1997; 10: 2-18
  • 129 Ketterman AJ, Saisawang C, Wongsantichon J. Insect glutathione transferases. Drug Metab Rev 2011; 43: 253-265
  • 130 Ritter K, Nes W. The effects of cholesterol on the development of Helio thiszea . J Insect Physiol 1981; 27: 175-182
  • 131 Grieneisen ML, Warren JT, Gilbert LI. Early steps in ecdysteroid biosynthesis: evidence for the involvement of cytochrome P-450 enzymes. Insect Biochem Mol Biol 1993; 23: 13-23
  • 132 Zdobnov EM, von Mering C, Letunic I, Torrents D, Suyama M, Copley RR, Christophides GK, Thomasova D, Holt RA, Subramanian GM, Mueller HM, Dimopoulos G, Law JH, Wells MA, Birney E, Charlab R, Halpern AL, Kokoza E, Kraft CL, Lai Z, Lewis S, Louis C, Barillas-Mury C, Nusskern D, Rubin GM, Salzberg SL, Sutton GG, Topalis P, Wides R, Wincker P, Yandell M, Collins FH, Ribeiro J, Gelbart WM, Kafatos FC, Bork P. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster . Science 2002; 298: 149-159
  • 133 Kim MS, Wessely V, Lan Q. Identification of mosquito sterol carrier protein-2 inhibitors. J Lipid Res 2005; 46: 650-657
  • 134 Peng R, Maklokova VI, Chandrashekhar JH, Lan Q. In vivo functional genomic studies of sterol carrier protein-2 gene in the yellow fever mosquito. PLoS One 2011; 6: e18030
  • 135 Gong J, Hou Y, Zha XF, Lu C, Zhu Y, Xia QY. Molecular cloning and characterization of Bombyx mori sterol carrier protein x/sterol carrier protein 2 (SCPx/SCP2) gene. DNA Seq 2006; 17: 326-333
  • 136 Guo XR, Zheng SC, Liu L, Feng QL. The sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCPx) is involved in cholesterol uptake in the midgut of Spodoptera litura: gene cloning, expression, localization and functional analyses. BMC Mol Biol 2009; 10: 102
  • 137 Renshaw PF, Janoff AS, Miller KW. On the nature of dilute aqueous cholesterol suspensions. J Lipid Res 1983; 24: 47-51
  • 138 Arrese EL, Canavoso LE, Jouni ZE, Pennington JE, Tsuchida K, Wells MA. Lipid storage and mobilization in insects: current status and future directions. Insect Biochem Mol Biol 2001; 31: 7-17
  • 139 Schroeder F, Gallegos AM, Atshaves BP, Storey SM, McIntosh AL, Petrescu AD, Huang H, Starodub O, Chao H, Yang H, Frolov A, Kier AB. Recent advances in membrane microdomains: rafts, caveolae, and intracellular cholesterol trafficking. Exp Biol Med (Maywood) 2001; 226: 873-890
  • 140 Seedorf U, Ellinghaus P, Roch Nofer J. Sterol carrier protein-2. Biochim Biophys Acta 2000; 1486: 45-54
  • 141 Vyazunova I, Wessley V, Kim M, Lan Q. Identification of two sterol carrier protein-2 like genes in the yellow fever mosquito, Aedes aegypti . Insect Mol Biol 2007; 16: 305-314
  • 142 Krebs KC, Lan Q. Isolation and expression of a sterol carrier protein-2 gene from the yellow fever mosquito, Aedes aegypti . Insect Mol Biol 2003; 12: 51-60
  • 143 Lan Q, Massey RJ. Subcellular localization of the mosquito sterol carrier protein-2 and sterol carrier protein-x. J Lipid Res 2004; 45: 1468-1474
  • 144 Lan Q, Wessely V. Expression of a sterol carrier protein-x gene in the yellow fever mosquito, Aedes aegypti . Insect Mol Biol 2004; 13: 519-529
  • 145 Dyer DH, Wessely V, Forest KT, Lan Q. Three-dimensional structure/function analysis of SCP-2-like2 reveals differences among SCP-2 family members. J Lipid Res 2008; 49: 644-653