Subscribe to RSS
DOI: 10.1055/a-1408-3885
Strategie zum risikostratifizierten Einsatz von Antigen-Schnelltests: Eindämmung der SARS-CoV-2-Pandemie durch die Integration von Schnelltests in das Fall- und Kontaktpersonenmanagement
Strategy for a Risk-stratified Use of Rapid Antigen Testing: Containing the SARS-CoV-2 Pandemic by Integrating Rapid Testing into Case and Contact Tracing Management
Zusammenfassung
Der Einsatz von Schnelltests bietet Chancen in der Bekämpfung der SARS-CoV-2 Pandemie; jedoch müssen die Auswirkungen von falsch-positiven und falsch-negativen Testergebnissen und die Reaktion der Bevölkerung antizipiert und berücksichtigt werden, um Schaden zu vermeiden. Auch geht ein ungezielter Einsatz von Schnelltests mit hohen direkten und indirekten Kosten einher und wird bei einem ineffizienten Ressourceneinsatz begrenzte Auswirkungen auf das Pandemiegeschehen haben können. Eine risikostratifizierte Teststrategie kann bei einer direkten Verknüpfung mit dem Fall- und Kontaktpersonenmanagement des Öffentlichen Gesundheitsdienstes (ÖGD) dazu beitragen, ressourceneffizient und nachhaltig die Infektionszahlen zu senken. Die Strategie sollte eine einheitliche Kommunikationsstrategie zum Umgang mit positiven und negativen Testergebnissen, eine gezielte Ausweitung der Zugänge zu niederschwelligen Testmöglichkeiten, die Sicherstellung eines zeitnahen und kostenlosen Zugangs zu den Ergebnissen von Bestätigungstests und die Einbindung in ein übergreifendes Dokumentationssystems zur Evaluation umfassen. Im Rahmen eines risikostratifizierten Einsatzes der Schnelltests sollten alle Personen mit akuten Symptomen einer Atemwegsinfektion sowie Personengruppen mit erhöhtem Risiko für das Bestehen einer SARS-CoV-2 Infektion gezielt getestet werden um „versteckte“ Infektionsnetzwerke zu identifizieren.
Abstract
The use of rapid testing offers an opportunity to contain the SARS-CoV-2 pandemic; however, the impact of false-positive and false-negative test results and population response must be anticipated and taken into consideration to avoid or mitigate harm. Untargeted use of rapid testing is associated with high direct and indirect costs and will have limited impact on the pandemic if resources are used inefficiently. We suggest using a risk-stratified testing strategy, based on targeted testing directly integrated with the Public Health Service's case and contact tracing management. According to the proposed targeted testing strategy stratified by risk of infection, all persons with acute symptoms of a respiratory infection as well as other population groups with an elevated probability of being infected with SARS-CoV-2 infection should be specifically tested to identify “hidden” infection networks. The strategy should include a uniform communication strategy for dealing with positive and negative test results, a targeted expansion of access to low-threshold testing opportunities, ensuring timely and free access to the results of confirmatory tests, and integration into an overarching documentation system for evaluation. This integration of a risk-stratified targeted testing strategy into case and contact tracing management embedded in a comprehensive strategy can help to reduce infection rates in a resource-efficient and sustainable manner.
Schlüsselwörter
COVID-19 - Strategie - Schnelltests - Antigentest - Öffentlicher Gesundheitsdienst - Fall- und KontaktpersonenmanagementKey words
COVID-19 - strategy - rapid testing - antigen testing - public health service - contact tracingBeide AutorInnen trugen gleichwertig zur Erstellung des Dokumentes bei.
Publication History
Article published online:
08 April 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Seifried J, Böttcher S, Oh D. et al. Was ist bei Antigentests zur Eigenanwendung (Selbsttests) zum Nachweis von SARS-CoV-2 zu beachten?. Epidemiologisches Bulletin 2021; 8: 3-9 DOI: 10.25646/8040.
- 2 Larremore DB, Wilder B, Lester E. et al. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. 2021; 7: eabd5393 DOI: 10.1126/sciadv.abd5393 %J Science Advances.
- 3 Mina MJ, Parker R, Larremore DB. Rethinking Covid-19 Test Sensitivity — A Strategy for Containment. 2020; 383: e120 DOI: 10.1056/NEJMp2025631.
- 4 Paltiel AD, Zheng A, Walensky RP. Assessment of SARS-CoV-2 Screening Strategies to Permit the Safe Reopening of College Campuses in the United States. JAMA network open 2020; 3: e2016818-e2016818 DOI: 10.1001/jamanetworkopen.2020.16818.
- 5 Abdulrahman A, Mustafa F, AlAwadhi AI. et al. Comparison of SARS-COV-2 nasal antigen test to nasopharyngeal RT-PCR in mildly symptomatic patients. 2020 2020.11.10.20228973 DOI: 10.1101/2020.11.10.20228973 %J medRxiv
- 6 Paul G, Plecko T, Sethi S. et al. Klinische Performance eines neuen SARS-CoV-2-AntigenTests in der Notaufnahme eines Maximalversorgers. Epidemiologisches Bulletin 2021; 3: 10-15
- 7 Berger A, Ngo Nsoga MT, Perez-Rodriguez FJ. et al. Diagnostic accuracy of two commercial SARS-CoV-2 Antigen-detecting rapid tests at the point of care in community-based testing centers. 2020:2020.11.20.20235341 DOI: 10.1101/2020.11.20.20235341 %J medRxiv.
- 8 Alemany A, Baró B, Ouchi D. et al. Analytical and clinical performance of the panbio COVID-19 antigen-detecting rapid diagnostic test. Journal of Infection 2020; DOI: 10.1016/j.jinf.2020.12.033.
- 9 Schwob JM, Miauton A, Petrovic D. et al. Antigen rapid tests, nasopharyngeal PCR and saliva PCR to detect SARS-CoV-2: a prospective comparative clinical trial. 2020:2020.11.23.20237057 DOI: 10.1101/2020.11.23.20237057%J medRxiv.
- 10 Osterman A, Baldauf H-M, Eletreby M. et al. Evaluation of two rapid antigen tests to detect SARS-CoV-2 in a hospital setting. Medical Microbiology and Immunology 2021; DOI: 10.1007/s00430-020-00698-8.
- 11 Lindner AK, Nikolai O, Rohardt C. et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with professional-collected nasal versus nasopharyngeal swab. 2021:2020.12.03.20243725 DOI: 10.1101/2020.12.03.20243725 %J medRxiv.
- 12 Lindner AK, Nikolai O, Rohardt C. et al. SARS-CoV-2 patient self-testing with an antigen-detecting rapid test: a head-to-head comparison with professional testing. 2021:2021.01.06.20249009 DOI: 10.1101/2021.01.06.20249009 %J medRxiv.
- 13 Cerutti F, Burdino E, Milia MG. et al. Urgent need of rapid tests for SARS CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology 2020; 132: 104654 DOI: 10.1016/j.jcv.2020.104654. [published Online First: 2020/10/15]
- 14 Linares M, Pérez-Tanoira R, Carrero A. et al. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. Journal of Clinical Virology 2020; 133: 104659 DOI: 10.1016/j.jcv.2020.104659.
- 15 Hoehl S, Schenk B, Rudych O. et al. At-home self-testing of teachers with a SARS-CoV-2 rapid antigen test to reduce potential transmissions in schools. Results of the SAFE School Hesse Study 2020; 2020.12.04.20243410 DOI: 10.1101/2020.12.04.20243410 %J medRxiv.
- 16 Dinnes J, Deeks JJ, Adriano A. et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. The Cochrane database of systematic reviews 2020; 8: Cd013705 DOI: 10.1002/14651858.Cd013705. [published Online First: 2020/08/28]
- 17 Pollock NR, Savage TJ, Wardell H. et al. Correlation of SARS-CoV-2 nucleocapsid antigen and RNA concentrations in nasopharyngeal samples from children and adults using an ultrasensitive and quantitative antigen assay. 2021; JCM.03077-20. doi: 10.1128/JCM.03077-20 %J Journal of Clinical Microbiology
- 18 Bulilete O, Lorente P, Leiva A. et al. Evaluation of the Panbio™ rapid antigen test for SARS-CoV-2 in primary health care centers and test sites. 2020:2020.11.13.20231316 DOI: 10.1101/2020.11.13.20231316 %J medRxiv.
- 19 He X, Lau EHY, Wu P. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine 2020; 26: 672-675 DOI: 10.1038/s41591-020-0869-5.
- 20 Kucirka LM, Lauer SA, Laeyendecker O. et al. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Annals of internal medicine 2020; 173: 262-267 DOI: 10.7326/m20-1495. [published Online First: 2020/05/19]
- 21 Mallett S, Allen AJ, Graziadio S. et al. At what times during infection is SARS-CoV-2 detectable and no longer detectable using RT-PCR-based tests? A systematic review of individual participant data. BMC medicine 2020; 18 DOI: 10.1186/s12916-020-01810-8.
- 22 Corman VM, Haage VC, Bleicker T. et al. Comparison of seven commercial SARS-CoV-2 rapid Point-of-Care Antigen tests. 2020:2020.11.12.20230292 DOI: 10.1101/2020.11.12.20230292 %J medRxiv.
- 23 Iglói Z, Velzing J, van Beek J. et al. Clinical evaluation of the Roche/SD Biosensor rapid antigen test with symptomatic, non-hospitalized patients in a municipal health service drive-through testing site. 2020:2020.11.18.20234104 DOI: 10.1101/2020.11.18.20234104 %J medRxiv.
- 24 Janßen C, Frie K, Dinger H. et al. Der Einfluss von sozialer Ungleichheit auf die medizinische und gesundheitsbezogene Versorgung in Deutschland. I. In: Richter M, Hurrelmann K. Gesundheitliche Ungleichheit: Grundlagen, Probleme, Perspektiven. 2nd Edition. Wiesbaden: VS Verlag für Sozialwissenschaften; 2009: 149-165
- 25 Jordan S, Krug S, Manz K. et al. Health behaviour and COVID-19: Initial findings on the pandemic. 2020; (S8/20) 1-14 DOI: http://dx.doi.org/10.25646/7055.
- 26 Wachtler B, Michalski N, Nowossadeck E. et al. Socioeconomic inequalities and COVID-19 – A review of the current international literature. 2020; (S7) 3-17 DOI: 10.25646/7059.
- 27 Contreras S, Dehning J, Loidolt M. et al. The challenges of containing SARS-CoV-2 via test-trace-and-isolate. Nature Communications 2021; 12: 378 DOI: 10.1038/s41467-020-20699-8.
- 28 Kucharski AJ, Klepac P, Conlan AJK. et al. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. The Lancet Infectious Diseases 2020; 20: 1151-1160 DOI: 10.1016/S1473-3099(20)30457-6.
- 29 Smith DRM, Duval A, Pouwels KB. et al. Optimizing COVID-19 surveillance in long-term care facilities: a modelling study. 2020; 18: 386
- 30 Tsoungui Obama HC, Nessma Adil MY, Looli Alawam N. et al. Preventing COVID-19 spread in closed facilities by regular testing of employees – an efficient intervention in long-term care facilities and prisons. 2020:2020.10.12.20211573 DOI: 10.1101/2020.10.12.20211573 %J medRxiv.
- 31 Holmdahl I, Kahn R, Hay J. et al. Frequent testing and immunity-based staffing will help mitigate outbreaks in nursing home settings. 2020
- 32 See I, Paul P, Slayton RB. et al. Modeling effectiveness of testing strategies to prevent COVID-19 in nursing homes – United States, 2020. Clinical Infectious Diseases 2021; DOI: 10.1093/cid/ciab110.