Synthesis 2021; 53(16): 2881-2888
DOI: 10.1055/a-1481-2023
paper

Dual Roles of TBHP-Enabled Regioselective Hydroetherification of (Trifluoromethyl)alkenes with Boronic Acids: Access to α-Trifluoromethyl β-Aryloxy Tertiary Alcohols

Hengyuan Li
,
Chuanle Zhu
We thank the National Natural Science Foundation of China (21702064), the Guangdong Basic and Applied Basic Research Foundation (2020B1515020012), the Fundamental Research Funds for Central Universities (2019ZD19), the National Undergraduate Innovative and Entrepreneurial Training Program (202010561050) for financial support.


Abstract

The three-starting materials four-component reaction of (trifluoromethyl)alkenes, TBHP, and boronic acids is reported, delivering various useful α-trifluoromethyl-β-aryloxy tertiary alcohols in high yields and in an exclusively regioselective hydroetherification manner. TBHP serves as both the oxidant and nucleophile in this reaction, as well as the O-source of the products.

Supporting Information



Publication History

Received: 09 March 2021

Accepted after revision: 13 April 2021

Accepted Manuscript online:
13 April 2021

Article published online:
29 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews:
    • 1a Russo A, Lattanzi A. Synthesis 2009; 1551
    • 1b Hu M, Wu W, Jiang H. ChemSusChem 2019; 12: 2911

    • For selected examples:
    • 1c Tang Y, Fan Y, Zhang Y, Li X, Xu X. Synlett 2016; 27: 1860
    • 1d Chen Y, Ma Y, Li L, Jiang H, Li Z. Org. Lett. 2019; 21: 1480
    • 1e Chen Y, Li L, Ma Y, Li Z. J. Org. Chem. 2019; 84: 5328
    • 1f Zhang J, Xiao D, Tan H, Liu W. J. Org. Chem. 2020; 85: 3929
    • 1g Mir BA, Rajamanicham S, Begum P, Patel BK. Eur. J. Org. Chem. 2020; 252
    • 2a Xia X, Zhu S, Gu Z, Wang H, Li W, Liu X, Liang Y. J. Org. Chem. 2015; 80: 5572
    • 2b Cheng J.-K, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42

      For selected examples:
    • 3a Nie J, Guo H, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
    • 3b Zhang G.-W, Meng W, Ma H, Nie J, Zhang W.-Q, Ma J.-A. Angew. Chem. Int. Ed. 2011; 50: 3538
    • 3c Cook AM, Wolf C. Angew. Chem. Int. Ed. 2016; 55: 2929
    • 3d Noda H, Amemiya F, Weidner K, Kumagai N, Shibasaki M. Chem. Sci. 2017; 8: 3260
    • 3e Zheng Y, Tan Y, Harms K, Marsch M, Riedel R, Zhang L, Meggers E. J. Am. Chem. Soc. 2017; 139: 4322
    • 3f Mszar NW, Mikus MS, Torker S, Haeffner F, Hoveyda AH. Angew. Chem. Int. Ed. 2017; 56: 8736
    • 3g Zhu C, Zhu R, Zeng H, Chen F, Liu C, Wu W, Jiang H. Angew. Chem. Int. Ed. 2017; 56: 13324
    • 3h Zhang H, Buchwald SL. J. Am. Chem. Soc. 2017; 139: 11590
    • 3i Gan X, Zhang Q, Jia X, Yin L. Org. Lett. 2018; 20: 1070
    • 3j Zhu C, Zeng H, Liu C, Chen F, Jiang H. Org. Lett. 2019; 21: 4900
    • 3k Liu C, Zhu C, Cai Y, Jiang H. Angew. Chem. Int. Ed. 2021; 60: in press DOI: 10.1002/anie.202017271.
  • 4 Tian F, Yan G, Yu J. Chem. Commun. 2019; 55: 13486

    • For selected examples:
    • 5a Ichitsuka T, Fujita T, Ichikawa J. ACS Catal. 2015; 5: 5947
    • 5b Huang Y, Hayashi T. J. Am. Chem. Soc. 2016; 138: 12340
    • 5c Liu Y, Zhou Y, Zhao Y, Qu J. Org. Lett. 2017; 19: 946
    • 5d Dai W, Lin Y, Wan Y, Cao S. Org. Chem. Front. 2018; 5: 55
    • 5e Wang M, Pu X, Zhao Y, Wang P, Li Z, Zhu C, Shi Z. J. Am. Chem. Soc. 2018; 140: 9061
    • 5f Gao P, Yuan C, Zhao Y, Shi Z. Chem 2018; 4: 2201
    • 5g Sakaguchi H, Ohashi M, Ogoshi S. Angew. Chem. Int. Ed. 2018; 57: 328
    • 5h Lan Y, Yang F, Wang C. ACS Catal. 2018; 8: 9245
    • 5i Jang YJ, Rose D, Mirabi B, Lautens M. Angew. Chem. Int. Ed. 2018; 57: 16147
    • 5j Lu X, Wang X, Gong T, Pi J, He S, Fu Y. Chem. Sci. 2019; 10: 809
    • 5k Lin Z, Lan Y, Wang C. ACS Catal. 2019; 9: 775
    • 5l Ding D, Lan Y, Lin Z, Wang C. Org. Lett. 2019; 21: 2723
    • 5m Lin Z, Lan Y, Wang C. Org. Lett. 2019; 21: 8316
    • 5n Chen F, Xu X, He Y, Huang G, Zhu S. Angew. Chem. Int. Ed. 2020; 59: 5398
    • 5o Zhao X, Li C, Wang B, Cao S. Tetrahedron Lett. 2019; 60: 129
    • 5p Liu Q, Zhao X, Li J, Cao S. Acta Chim. Sin. 2018; 76: 945

      For selected examples:
    • 6a Xiao T, Li L, Zhou L. J. Org. Chem. 2016; 81: 7908
    • 6b Lang SB, Wiles RJ, Kelly CB, Molander GA. Angew. Chem. Int. Ed. 2017; 56: 15073
    • 6c Wu L.-H, Cheng J.-K, Shen L, Shen Z.-L, Loh T.-P. Adv. Synth. Catal. 2018; 360: 3894
    • 6d He Y, Anand D, Sun Z, Zhou L. Org. Lett. 2019; 21: 3769
    • 6e Phelan JP, Lang SB, Sim J, Berritt S, Peat AJ, Billings K, Fan L, Molander GA. J. Am. Chem. Soc. 2019; 141: 3723
    • 6f Anand D, Sun Z, Zhou L. Org. Lett. 2020; 22: 2371
  • 7 Zeng H, Zhu C, Liu C, Cai Y, Chen F, Jiang H. Chem. Commun. 2020; 56: 6241
  • 8 Weiss M, Sulz-er-Mosse S. PCT Int. Appl WO 2018/091430 A1, 2018

    • For selected examples:
    • 9a Molander GA, Cavalcanti LN. J. Org. Chem. 2011; 76: 623
    • 9b Zhu C, Wang R, Flack JR. Org. Lett. 2012; 14: 3494
    • 9c Gogoi A, Bora U. Synlett 2012; 23: 1079
    • 9d Gogoi P, Bezboruah P, Gogoi J, Boruah RC. Eur. J. Org. Chem. 2013; 7291
    • 9e Chen D.-S, Huang J.-M. Synlett 2013; 24: 499
    • 9f Guo S, Lu L, Cai H. Synlett 2013; 24: 1712
    • 9g Chatterjee N, Goswami A. Tetrahedron Lett. 2015; 56: 1524
    • 9h Molloy JJ, Clohessy TA, Irving C, Anderson NA, Lloyd-Jones GC, Watson AJ. B. Chem. Sci. 2017; 8: 1551
    • 9i Weng W.-Z, Liang H, Zhang B. Org. Lett. 2018; 20: 4979
    • 9j Yin W, Pan X, Leng W, Chen J, He H. Green Chem. 2019; 21: 4614
    • 10a Zeng H, Zhu C, Jiang H. Org. Lett. 2019; 21: 1130
    • 10b Cai Y, Zeng H, Zhu C, Liu C, Liu G, Jiang H. Org. Front. Chem. 2020; 7: 1260
    • 10c Zhu C, Zeng H, Liu C, Cai Y, Fang X, Jiang H. Org. Lett. 2020; 22: 809
    • 10d Zeng H, Cai Y, Jiang H, Zhu C. Org. Lett. 2021; 23: 66
    • 10e Zeng H, Fang X, Yang Z, Zhu C, Jiang H. J. Org. Chem. 2021; 86: 2810
  • 11 Zatolochnaya OV, Gevorgyan V. Org. Lett. 2013; 15: 2562