RSS-Feed abonnieren
DOI: 10.1055/a-1499-8742
Synthesis of β-Hydroxy Aryl Selenides via Transition-Metal-Free Three-Component Reaction of Arylamines, Elemental Selenium, and Epoxides

Abstract
An efficient protocol for the construction of valuable β-hydroxy aryl selenides from easily available arylamines, elemental selenium, and epoxides through a transition-metal-free radical process is described. A wide variety of β-hydroxy aryl selenides were obtained in good to excellent yields with excellent stereo- and regioselectivity. In this reaction, two C–Se bonds can be built along with the cleavage of a C–N and C–O bond, demonstrating the high step economy and efficiency of this approach.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1499-8742.
- Supporting Information
Publikationsverlauf
Eingereicht: 23. Februar 2021
Angenommen nach Revision: 05. Mai 2021
Accepted Manuscript online:
05. Mai 2021
Artikel online veröffentlicht:
31. Mai 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Shao L, Li Y, Lu J, Jiang X. Org. Chem. Front. 2019; 6: 2999
- 1b Singh FV, Wirth T. Catal. Sci. Technol. 2019; 9: 1073
- 1c Manjare ST, Kim Y, Churchill DG. Acc. Chem. Res. 2014; 47: 2985
- 1d Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
- 2a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
- 2b Jose DE, Kanchana US, Mathew TV, Anilkumar G. Curr. Org. Chem. 2020; 24: 1230
- 3a Wang D.-Y, Wen X, Xiong C.-D, Zhao J.-N, Ding C.-Y, Meng Q, Zhou H, Wang C, Uchiyama M, Lu X.-J, Zhang A. iScience 2019; 15: 307
- 3b Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 951
- 4a Rampon DS, Luz EQ, Lima DB, Balaguez RA, Schneider PH, Alves D. Dalton Trans. 2019; 48: 9851
- 4b Sonawane AD, Koketsu M. Curr. Org. Chem. 2019; 23: 3206
- 4c Bürger M, Röttger SH, Loch MN, Jones PG, Werz DB. Org. Lett. 2020; 22: 5025
- 5a Abenante L, Padilha NB, Anghinoni JM, Penteado F, Rosati O, Santi C, Silva MS, Lenardão EJ. Org. Biomol. Chem. 2020; 18: 5210
- 5b Guan S, Chen Y, Wu H, Xu R. RSC Adv. 2020; 10: 27058
- 5c Yang D, Li G, Xing C, Cui W, Li K, Wei W. Org. Chem. Front. 2018; 5: 2974
- 6a Zhang Z.-Z, Chen R, Zhang X.-H, Zhang X.-G. J. Org. Chem. 2021; 86: 632
- 6b Jin G.-Q, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. RSC Adv. 2020; 10: 30439
- 6c Wu J, Gao W.-X, Huang X.-B, Zhou Y.-B, Liu M.-C, Wu H.-Y. Org. Lett. 2020; 22: 5555
- 6d Wu J, Yang Y.-F, Huang X.-B, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. ACS Omega 2020; 5: 23358
- 6e Zhang X, Huang XB, Zhou YB, Liu MC, Wu HY. Chem. Eur. J. 2021; 27: 944
- 6f Yang YF, Li CY, Leng T, Huang XB, Gao WX, Zhou YB, Liu MC, Wu HY. Adv. Synth. Catal. 2020; 362: 2168
- 6g Wang D.-L, Fang Y, Wang S.-Y, Ji S.-J. Tetrahedron 2020; 76: 131083
- 6h Gao X, Tang L, Huang L, Huang Z.-S, Ma Y, Wu G. Org. Lett. 2019; 21: 745
- 6i Ni P, Tan J, Zhao W, Huang H, Xiao F, Deng G.-J. Org. Lett. 2019; 21: 3518
- 6j Wang H, Ying J, Lai M, Qi X, Peng J.-B, Wu X.-F. Adv. Synth. Catal. 2018; 360: 1693
- 6k Ni P, Tan J, Zhao W, Huang H, Deng G.-J. Adv. Synth. Catal. 2019; 361: 5351
- 6l Guo T, Wei X.-N, Liu Y, Zhang P.-K, Zhao Y.-H. Org. Chem. Front. 2019; 6: 1414
- 6m Jakubczyk M, Mkrtchyan S, Madura ID, Marek PH, Iaroshenko VO. RSC Adv. 2019; 9: 25368
- 6n Zhu J, Zhu W, Xie P, Pittman CU, Zhou A. Tetrahedron 2018; 74: 6569
- 6o Werz DB, Gleiter R. J. Org. Chem. 2003; 68: 9400
- 7a Sharpless KB, Lauer RF. J. Am. Chem. Soc. 1973; 95: 2697
- 7b Dumont W, Bayet P, Krief A. Angew. Chem., Int. Ed. Engl. 1974; 13: 804
- 7c Hori T, Sharpless KB. J. Org. Chem. 1978; 43: 1689
- 8a Remion J, Dumont W, Krief A. Tetrahedron Lett. 1976; 1385
- 8b Piers E, Nagakura I. Tetrahedron Lett. 1976; 3237
- 9a Van Ende D, Krief A. Tetrahedron Lett. 1976; 457
- 9b Van Ende D, Dumont W, Hevesi L, Krief A. Angew. Chem., Int. Ed. Engl. 1975; 14: 700
- 9c Dumont W, Krief A. Angew. Chem., Int. Ed. Engl. 1975; 14: 350
- 10a Min L, Wu G, Liu M, Gao W, Ding J, Chen J, Huang X, Wu H. J. Org. Chem. 2016; 81: 7584
- 10b Leng T, Wu G, Zhou Y.-B, Gao W, Ding J, Huang X, Liu M, Wu H. Adv. Synth. Catal. 2018; 360: 4336
- 10c Soleiman-Beigi M, Kohzadi H. Arab. J. Chem. 2019; 12: 1532
- 10d Ganesh V, Chandrasekaran S. Synthesis 2009; 3267
- 10e Capperucci A, Tiberi C, Pollicino S, Degl’Innocenti A. Tetrahedron Lett. 2009; 50: 2808
- 10f Tanini D, Capperucci A, Degl’Innocenti A. Eur. J. Org. Chem. 2015; 357
- 10g Yang M, Yuan C, Pan Y, Zhu C. Chin. J. Chem. 2006; 24: 669
- 10h Yang M, Zhu C, Yuan F, Huang Y, Pan Y. Org. Lett. 2005; 7: 1927
- 10i Yang M, Zhu C, Yuan F, Huang Y, Pan Y. Org. Lett. 2005; 7: 1927
- 10j Devan N, Srihar PR, Prabhu KR, Chandrasekaran S. J. Org. Chem. 2002; 67: 9417
- 10k Vieira AA, Azeredo JB, Godoi M, Santi C, da Silva Junior EN, Braga A. J. Org. Chem. 2015; 80: 2120
- 10l Sridhar R, Srinivas B, Surendra K, Krishnaveni NS, Rao KR. Tetrahedron Lett. 2005; 46: 8837
- 10m Zhang Y, Wu S, Yan J. Helv. Chim. Acta 2016; 99: 654
- 10n Redon S, Leleu S, Pannecoucke X, Franck X, Outurquin F. Tetrahedron 2008; 64: 9293
- 10o Angeli A, Tanini D, Capperucci A, Supuran CT. ACS Med. Chem. Lett. 2017; 8: 1213
- 11 Wu G, Min L, Li H, Gao W, Ding J, Huang X, Liu M, Wu H. Green Chem. 2018; 20: 1560
- 12a Luo D, Wu G, Yang H, Liu M, Gao W, Huang X, Chen J, Wu H. J. Org. Chem. 2016; 81: 4485
- 12b Gao C, Wu G, Min L, Liu M, Gao W, Ding J, Chen J, Huang X, Wu H. J. Org. Chem. 2017; 82: 250
- 12c An C, Li C.-Y, Huang X.-B, Gao W.-X, Zhou Y.-B, Liu M.-C, Wu H.-Y. Org. Lett. 2019; 21: 6710
- 13a Zang H, Sun J.-G, Dong X, Li P, Zhang B. Adv. Synth. Catal. 2016; 358: 1746
- 13b Hari DP, Hering T, König B. Org. Lett. 2012; 14: 5334
- 14 Singh D, Deobald AM, Camargo LR. S, Tabarelli G, Rodrigues OE. D, Brag AL. Org. Lett. 2010; 12: 3288
For selected reviews, see:
For selected reviews, see:
For selected recent examples, see:
For selected recent examples, see: