CC BY-NC-ND 4.0 · Planta Med 2022; 88(02): 130-143
DOI: 10.1055/a-1582-9794
Focus Issue Pyrrolizidine Alkaloids
Reviews

The Role of Kinetics as Key Determinant in Toxicity of Pyrrolizidine Alkaloids and Their N-Oxides

1   Division of Toxicology, Wageningen University and Research, The Netherlands
,
Yasser Alhejji
1   Division of Toxicology, Wageningen University and Research, The Netherlands
2   Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
,
Ivonne M. C. M. Rietjens
1   Division of Toxicology, Wageningen University and Research, The Netherlands
› Author Affiliations
Supported by: Qassim University 35796

Abstract

Pyrrolizidine alkaloids (PAs) are a large group of plant constituents of which especially the 1,2- unsaturated PAs raise a concern because of their liver toxicity and potential genotoxic carcinogenicity. This toxicity of PAs depends on their kinetics. Differences in absorption, distribution, metabolism, and excretion (ADME) characteristics of PAs may substantially alter the relative toxicity of PAs. As a result, kinetics will also affect relative potency (REP) values. The present review summarizes the current state-of-the art on PA kinetics and resulting consequences for toxicity and illustrates how physiologically-based kinetic (PBK) modelling can be applied to take kinetics into account when defining the relative differences in toxicity between PAs in the in vivo situation. We conclude that toxicokinetics play an important role in the overall toxicity of pyrrolizidine alkaloids. and that kinetics should therefore be considered when defining REP values for combined risk assessment. New approach methodologies (NAMs) can be of use to quantify these kinetic differences between PAs and their N-oxides, thus contributing to the 3Rs (Replacement, Reduction and Refinement) in animal studies.

Supporting Information



Publication History

Received: 13 April 2021

Accepted after revision: 09 August 2021

Article published online:
05 November 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 EFSA Scientific Committee. Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen KH, More S, Mortensen A, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Silano V, Solecki R, Turck D, Aerts M, Bodin L, Davis A, Edler L, Gundert-Remy U, Sand S, Slob W, Bottex B, Abrahantes JC, Marques DC, Kass G, Schlatter JR. Update: Use of the benchmark dose approach in risk assessment. EFSA J 2017; 15: e04658
  • 2 Yang M, Ma J, Ruan J, Zhang C, Ye Y, Fu PPC, Lin G. Absorption difference between hepatotoxic pyrrolizidine alkaloids and their N-oxides–Mechanism and its potential toxic impact. J Ethnopharmacol 2020; 249: 112421
  • 3 Tu M, Sun S, Wang K, Peng X, Wang R, Li L, Zeng S, Zhou H, Jiang H. Organic cation transporter 1 mediates the uptake of monocrotaline and plays an important role in its hepatotoxicity. Toxicology 2013; 311: 225-230
  • 4 Koepsell H, Endou H. The SLC22 drug transporter family. Pflügers Archiv 2004; 447: 666-676
  • 5 Tu M, Li L, Lei H, Ma Z, Chen Z, Sun S, Xu S, Zhou H, Zeng S, Jiang H. Involvement of organic cation transporter 1 and CYP3A4 in retrorsine-induced toxicity. Toxicology 2014; 322: 34-42
  • 6 Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988; 29: 1035-1041
  • 7 McConnell EL, Basit AW, Murdan S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J Pharm Pharmacol 2008; 60: 63-70
  • 8 Berezhkovskiy LM. Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J Pharm Sci 2004; 93: 1628-1640
  • 9 Punt A, Pinckaers N, Peijnenburg A, Louisse J. Development of a web-based toolbox to support Quantitative In-Vitro-to-In-Vivo Extrapolations (QIVIVE) within nonanimal testing strategies. Chem Res Toxicol 2020; 34: 460-472
  • 10 Lobell M, Sivarajah V. In silico prediction of aqueous solubility, human plasma protein binding and volume of distribution of compounds from calculated pK a and AlogP98 values. Mol Divers 2003; 7: 69-87
  • 11 Gao Y, Gesenberg C, Zheng W. Oral Formulations for preclinical Studies: Principle, Design, and Development Considerations. In: Qiu Y, Chen Y, Zhang GGZ, Yu L, Mantri RV. eds. Developing solid oral Dosage Forms. Amsterdam: Elsevier; 2017: 455-495
  • 12 Noorlander A, Wesseling S, Rietjens IMCM, van Ravenzwaay B. Incorporating renal excretion via the OCT2 transporter in physiologically based kinetic modelling to predict in vivo kinetics of mepiquat in rat. Toxicol Lett 2021; 343: 34-43
  • 13 Mattocks A. Chemistry and Toxicology of Pyrrolizidine Alkaloids. London: Academic Press; 1986
  • 14 Yang M, Ma J, Ruan J, Ye Y, Fu PPC, Lin G. Intestinal and hepatic biotransformation of pyrrolizidine alkaloid N-oxides to toxic pyrrolizidine alkaloids. Arch Toxicol 2019; 93: 2197-2209
  • 15 Mattocks AR. Hepatotoxic effects due to pyrrolizidine alkaloid N-oxides. Xenobiotica 1971; 1: 563-565
  • 16 Powis G, Ames MM, Kovach JS. Metabolic conversion of indicine N-oxide to indicine in rabbits and humans. Cancer Res 1979; 39: 3564-3570
  • 17 Chu PS, Lamé MW, Segall H. In vivo metabolism of retrorsine and retrorsine-N-oxide. Arch Toxicol 1993; 67: 39-43
  • 18 Jago MV, Edgar J, Smith L, Culvenor C. Metabolic conversion of heliotridine-based pyrrolizidine alkaloids to dehydroheliotridine. Mol Pharmacol 1970; 6: 402-406
  • 19 Phillipson J, Handa S. Alkaloid N-oxides. A review of recent developments. Lloydia 1978; 41: 385-431
  • 20 Chen L, Ning J, Louisse J, Wesseling S, Rietjens IM. Use of physiologically based kinetic modelling-facilitated reverse dosimetry to convert in vitro cytotoxicity data to predicted in vivo liver toxicity of lasiocarpine and riddelliine in rat. Food Chem Toxicol 2018; 116: 216-226
  • 21 Lester C, Troutman J, Obringer C, Wehmeyer K, Stoffolano P, Karb M, Xu Y, Roe A, Carr G, Blackburn K. Intrinsic relative potency of a series of pyrrolizidine alkaloids characterized by rate and extent of metabolism. Food Chem Toxicol 2019; 131: 110523
  • 22 Suparmi S, Wesseling S, Rietjens IMCM. Monocrotaline-induced liver toxicity in rat predicted by a combined in vitro physiologically based kinetic modeling approach. Arch Toxicol 2020; 94: 3281-3295
  • 23 Rietjens IMCM, Louisse J, Punt A. Tutorial on physiologically based kinetic modeling in molecular nutrition and food research. Molecular Nutr & Food Res 2011; 55: 941-956
  • 24 Louisse J, Beekmann K, Rietjens IMCM. Use of physiologically based kinetic modeling-based reverse dosimetry to predict in vivo toxicity from in vitro data. Chem Res Toxicol 2017; 30: 114-125
  • 25 Louisse J, Verwei M, Woutersen RA, Blaauboer BJ, Rietjens IMCM. Toward in vitro biomarkers for developmental toxicity and their extrapolation to the in vivo situation. Expert Opin Drug Metab Toxicol 2012; 8: 11-27
  • 26 Chen L, Peijnenburg A, de Haan L, Rietjens IMCM. Prediction of in vivo genotoxicity of lasiocarpine and riddelliine in rat liver using a combined in vitro-physiologically based kinetic modelling-facilitated reverse dosimetry approach. Arch Toxicol 2019; 93: 2385-2395
  • 27 Ning J, Chen L, Strikwold M, Louisse J, Wesseling S, Rietjens IMCM. Use of an in vitroin silico testing strategy to predict inter-species and inter-ethnic human differences in liver toxicity of the pyrrolizidine alkaloids lasiocarpine and riddelliine. Arch Toxicol 2019; 93: 801-818
  • 28 Ning J, Rietjens IMCM, Strikwold M. Integrating physiologically based kinetic (PBK) and Monte Carlo modelling to predict inter-individual and inter-ethnic variation in bioactivation and liver toxicity of lasiocarpine. Arch Toxicol 2019; 93: 2943-2960
  • 29 Suparmi S, Wesseling S, Rietjens IMCM. Monocrotaline-induced liver toxicity in rat predicted by a combined in vitro physiologically based kinetic modeling approach. Arch Toxicol 2020; 94: 3281
  • 30 Nolan JP, Scheig RL, Klatskin G. Delayed hepatitis and cirrhosis in weanling rats following a single small dose of the senecio alkaloid, lasiocarpine. Am J Pathol 1966; 49: 129
  • 31 Williams L, Chou MW, Yan J, Young JF, Chan PC, Doerge DR. Toxicokinetics of riddelliine, a carcinogenic pyrrolizidine alkaloid, and metabolites in rats and mice. Toxicol Appl Pharmacol 2002; 182: 98-104
  • 32 Dalefield RR, Gosse MA, Mueller U. A 28-day oral toxicity study of echimidine and lasiocarpine in Wistar rats. Regul Toxicol Pharmacol 2016; 81: 146-154
  • 33 Jago MV. A method for the assessment of the chronic hepatoxicity of pyrrolizidine alkaloids. Aust Jl Exp Biol Med Sci 1970; 48: 93-103
  • 34 EFSA Panel on Contaminants in the Food Chain (CONTAM). Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Gomez Ruiz JA, Binaglia M. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA J 2017; 15: e04908
  • 35 Schrenk D, Gao L, Lin G, Mahony C, Mulder PP, Peijnenburg A, Pfuhler S, Rietjens IM, Rutz L, Steinhoff B. Pyrrolizidine alkaloids in food and phytomedicine: Occurrence, exposure, toxicity, mechanisms, and risk assessment-A review. Food Chem Toxicol 2020; 136: 111107
  • 36 Yang M, Ruan J, Gao H, Li N, Ma J, Xue J, Ye Y, Fu PP, Wang J, Lin G. First evidence of pyrrolizidine alkaloid N-oxide-induced hepatic sinusoidal obstruction syndrome in humans. Arch Toxicol 2017; 91: 3913-3925
  • 37 Waizenegger J, Braeuning A, Templin M, Lampen A, Hessel-Pras S. Structure-dependent induction of apoptosis by hepatotoxic pyrrolizidine alkaloids in the human hepatoma cell line HepaRG: Single versus repeated exposure. Food Chem Toxicol 2018; 114: 215-226
  • 38 Xiong F, Jiang K, Chen Y, Ju Z, Yang L, Xiong A, Wang Z. Protein cross-linking in primary cultured mouse hepatocytes by dehydropyrrolizidine alkaloids: Structure–toxicity relationship. Toxicon 2020; 186: 4-11
  • 39 Gao L, Rutz L, Schrenk D. Structure-dependent hepato-cytotoxic potencies of selected pyrrolizidine alkaloids in primary rat hepatocyte culture. Food Chem Toxicol 2020; 135: 110923
  • 40 Allemang A, Mahony C, Lester C, Pfuhler S. Relative potency of fifteen pyrrolizidine alkaloids to induce DNA damage as measured by micronucleus induction in HepaRG human liver cells. Food Chem Toxicol 2018; 121: 72-81
  • 41 Chou MW, Jian Y, Williams LD, Xia Q, Churchwell M, Doerge DR, Fu PP. Identification of DNA adducts derived from riddelliine, a carcinogenic pyrrolizidine alkaloid. Chem Res Toxicol 2003; 16: 1130-1137
  • 42 Chou MW, Yan J, Nichols J, Xia Q, Beland FA, Chan PC, Fu PP. Correlation of DNA adduct formation and riddelliine-induced liver tumorigenesis in F344 rats and B6C3F1 mice [Cancer Lett. 193 (2003) 119–125]. Cancer Lett 2004; 207: 119-125
  • 43 Fu PP, Chou MW, Churchwell M, Wang Y, Zhao Y, Xia Q, Gamboa da Costa G, Marques MM, Beland FA, Doerge DR. High-performance liquid chromatography electrospray ionization tandem mass spectrometry for the detection and quantitation of pyrrolizidine alkaloid-derived DNA adducts in vitro and in vivo . Chem Res Toxicol 2010; 23: 637-652
  • 44 Fu PP, Xia Q, Lin G, Chou MW. Pyrrolizidine alkaloids–genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev 2004; 36: 1-55
  • 45 Wang YP, Yan J, Fu PP, Chou MW. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid. Toxicol Lett 2005; 155: 411-420
  • 46 Xia Q, Chou MW, Edgar JA, Doerge DR, Fu PP. Formation of DHP-derived DNA adducts from metabolic activation of the prototype heliotridine-type pyrrolizidine alkaloid, lasiocarpine. Cancer Lett 2006; 231: 138-145
  • 47 Xia Q, Zhao Y, Von Tungeln LS, Doerge DR, Lin G, Cai L, Fu PP. Pyrrolizidine alkaloid-derived DNA adducts as a common biological biomarker of pyrrolizidine alkaloid-induced tumorigenicity. Chem Res Toxicol 2013; 26: 1384-1396
  • 48 Yang YC, Yan J, Doerge DR, Chan PC, Fu PP, Chou MW. Metabolic activation of the tumorigenic pyrrolizidine alkaloid, riddelliine, leading to DNA adduct formation in vivo . Chem Res Toxicol 2001; 14: 101-109
  • 49 Prakash AS, Pereira TN, Reilly PE, Seawright AA. Pyrrolizidine alkaloids in human diet. Mutat Res 1999; 443: 53-67
  • 50 Uhl M, Helma C, Knasmüller S. Evaluation of the single cell gel electrophoresis assay with human hepatoma (Hep G2) cells. Mutat Res 2000; 468: 213-225
  • 51 Louisse J, Rijkers D, Stoopen G, Holleboom WJ, Delagrange M, Molthof E, Mulder PP, Hoogenboom RL, Audebert M, Peijnenburg AA. Determination of genotoxic potencies of pyrrolizidine alkaloids in HepaRG cells using the γH2AX assay. Food Chem Toxicol 2019; 131: 110532
  • 52 Cleaver JE, Feeney L, Revet I. Phosphorylated H2Ax is not an Unambiguous Marker for DNA Double-Strand Breaks. Taylor & Francis; 2011
  • 53 de Feraudy S, Revet I, Bezrookove V, Feeney L, Cleaver JE. A minority of foci or pan-nuclear apoptotic staining of γH2AX in the S phase after UV damage contain DNA double-strand breaks. PNAS 2010; 107: 6870-6875
  • 54 Audebert M, Riu A, Jacques C, Hillenweck A, Jamin E, Zalko D, Cravedi JP. Use of the γH2AX assay for assessing the genotoxicity of polycyclic aromatic hydrocarbons in human cell lines. Toxicol Lett 2010; 199: 182-192
  • 55 Khoury L, Zalko D, Audebert M. Validation of high-throughput genotoxicity assay screening using γH2AX in-cell western assay on HepG2 cells. Environ Mol Mutagen 2013; 54: 737-746
  • 56 Mah L, El-Osta A, Karagiannis T. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 2010; 24: 679-686
  • 57 Pinto DMS, Flaus A. Structure and Function of Histone H2AX. In: Nasheuer HP. eds. Genome Stability and Human Diseases. Subcellular Biochemistry, Vol 50. Dordrecht: Springer; 2010: 55-78
  • 58 Chou MW, Wang YP, Yan J, Yang YC, Beger RD, Williams LD, Doerge DR, Fu PP. Riddelliine N-oxide is a phytochemical and mammalian metabolite with genotoxic activity that is comparable to the parent pyrrolizidine alkaloid riddelliine. Toxicol Lett 2003; 145: 239-247
  • 59 EFSA. Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA J 2017; 15: e04908
  • 60 Merz KH, Schrenk D. Interim relative potency factors for the toxicological risk assessment of pyrrolizidine alkaloids in food and herbal medicines. Toxicol Lett 2016; 263: 44-57
  • 61 NTP. Bioassay of lasiocarpine for possible carcinogenicity. Natl Cancer Inst Carcinog Tech Rep Ser 1978; 39: 1-66
  • 62 NTP. Toxicology and Carcinogenesis Studies of Riddelliine in F344/N Rats and B6C3F1 Mice. NTP Technical Report (CAS No. 23246-96-0). 2001
  • 63 Kirsch-Volders M. Towards a validation of the micronucleus test. Mutat Res 1997; 392: 1-4
  • 64 Bouquet F, Muller C, Salles B. The loss of γH2AX signal is a marker of DNA double strand breaks repair only at low levels of DNA damage. Cell Cycle 2006; 5: 1116-1122
  • 65 Imreh G, Norberg HV, Imreh S, Zhivotovsky B. Chromosomal breaks during mitotic catastrophe trigger γH2AX–ATM–p53-mediated apoptosis. J Cell Sci 2011; 124: 2951-2963
  • 66 Revet I, Feeney L, Bruguera S, Wilson W, Dong TK, Oh DH, Dankort D, Cleaver JE. Functional relevance of the histone γH2Ax in the response to DNA damaging agents. PNAS 2011; 108: 8663-8667
  • 67 Harada A, Matsuzaki K, Takeiri A, Mishima M. The predominant role of apoptosis in γH2AX formation induced by aneugens is useful for distinguishing aneugens from clastogens. Mutat Res 2014; 771: 23-29
  • 68 Bekeschus S, Schütz CS, Nießner F, Wende K, Weltmann KD, Gelbrich N, von Woedtke T, Schmidt A, Stope MB. Elevated H2AX phosphorylation observed with kINPen plasma treatment is not caused by ROS-mediated DNA damage but is the consequence of apoptosis. Oxid Med Cell Longev 2019; 8535163 DOI: 10.1155/2019/8535163.
  • 69 Fashe MM, Juvonen RO, Petsalo A, Rasanen J, Pasanen M. Species-specific differences in the in vitro metabolism of lasiocarpine. Chem Res Toxicol 2015; 28: 2034-2044
  • 70 Li N, Xia Q, Ruan J, Fu PP, Lin G. Hepatotoxicity and tumorigenicity induced by metabolic activation of pyrrolizidine alkaloids in herbs. Curr Drug Metab 2011; 12: 823-834
  • 71 Miranda CL, Reed RL, Guengerich FP, Buhler DR. Role of cytochrome P450IIIA4 in the metabolism of the pyrrolizidine alkaloid senecionine in human liver. Carcinogenesis 1991; 12: 515-519
  • 72 Mueller D, Krämer L, Hoffmann E, Klein S, Noor F. 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies. Toxicology in Vitro 2014; 28: 104-112
  • 73 Gómez-Lechón MJ, Tolosa L, Conde I, Donato MT. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Durg Metab Toxicol 2014; 10: 1553-1568
  • 74 Kovach JS, Ames MM, Powis G, Moertel CG, Hahn RG, Creagan ET. Toxicity and pharmacokinetics of a pyrrolizidine alkaloid, indicine N-oxide, in humans. Cancer Res 1979; 39: 4540-4544
  • 75 Xiong A, Li Y, Yang L, Gao J, He Y, Wang C, Wang Z. Simultaneous determination of senecionine, adonifoline and their metabolites in rat serum by UPLC–ESIMS and its application in pharmacokinetic studies. J Pharm Biomed Anal 2009; 50: 1070-1074
  • 76 Wang C, Li Y, Gao J, He Y, Xiong A, Yang L, Cheng X, Ma Y, Wang Z. The comparative pharmacokinetics of two pyrrolizidine alkaloids, senecionine and adonifoline, and their main metabolites in rats after intravenous and oral administration by UPLC/ESIMS. Anal Bioanall Chem 2011; 401: 275-287
  • 77 Long F, Ji J, Wang X, Wang L, Chen T. LC-MS/MS method for determination of seneciphylline and its metabolite, seneciphylline N-oxide in rat plasma and its application to a rat pharmacokinetic study. Biomed Chromatogr 2021; 35: e5145
  • 78 Estep J, Lame M, Morin D, Jones A, Wilson DW, Segall H. [14C] monocrotaline kinetics and metabolism in the rat. Drug Metab Dispos 1991; 19: 135-139
  • 79 Chen L, Zhang B, Liu J, Fan Z, Weng Z, Geng P, Wang X, Lin G. Pharmacokinetics and bioavailability study of monocrotaline in mouse blood by ultra-performance liquid chromatography-tandem mass spectrometry. Biomed Res Int 2018; 1578643 DOI: 10.1155/2018/1578643.