Synthesis 2022; 54(05): 1431-1445
DOI: 10.1055/a-1654-4111
paper

Total Synthesis of DHA and DPAn-3 Non-Enzymatic Oxylipins

Alexandre Guy
,
Jérémy Merad
,
Thomas Degrange
,
Guillaume Reversat
,
Valérie Bultel-Poncé
,
Thierry Durand
,
Jean-Marie Galano
,
Camille Oger


Abstract

Oxylipins are formed in vivo from polyunsaturated fatty acids (PUFAs). A large structural variety of compounds is grouped under the term oxylipins, which differ from their formation mechanism (involving enzymes or not), as well as their chemical structures (cyclopentane, tetrahydrofuran, hydroxylated-PUFA, etc.). All structures of oxylipins are of great biological interest. Directly correlated to oxidative stress phenomenon, non-enzymatic oxylipins are used as systemic and/or specific biomarkers in various pathologies, and more especially, they were found to have their own biological properties. Produced in vivo as a non-separable mixture of isomers, their total synthesis is a keystone to answer biological questions. In this work, the total synthesis of three non-enzymatic oxylipins derived from docosahexaenoic acid (DHA) and docosapentanoic acid (DPAn-3) is described using a unique and convergent synthetic strategy.

Supporting Information



Publication History

Received: 21 July 2021

Accepted after revision: 27 September 2021

Accepted Manuscript online:
27 September 2021

Article published online:
17 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Balas L, Durand T. Prog. Lipid Res. 2016; 61: 1
  • 2 Jahn U, Galano J.-M, Durand T. Angew. Chem. Int. Ed. 2008; 47: 5894
  • 3 Ahmed OS, Galano J.-M, Pavlickova T, Revol-Cavalier J, Vigor C, Lee JH. Y, Oger C, Durand T. Essays Biochem. 2020; 64: 463
  • 4 Guy A, Oger C, Heppekausen J, Signorini C, De Felice C, Fürstner A, Durand T, Galano J.-M. Chem. Eur. J. 2014; 20: 6374
  • 5 Oger C, Brinkmann Y, Bouazzaoui S, Durand T, Galano J.-M. Org. Lett. 2008; 10: 5087
  • 6 Wittig G, Schöllkopf U. Chem. Ber. 1954; 87: 1318

    • For previous Wittig reaction using phosphonium salt 5a on lactols, see:
    • 7a Klimko P, Hellberg M, McLaughlin M, Sharif N, Severns B, Williams G, Haggard K, Liao J. Bioorg. Med. Chem. 2004; 12: 3451
    • 7b Gras J.-L, Soto T, Viala J. Tetrahedron: Asymmetry 1999; 10: 139

      For previous Wittig reaction using phosphonium salt 5b on lactols, see:
    • 8a Ohloff G, Vial C, Näf F, Pawlak M. Helv. Chim. Acta 1977; 60: 1161
    • 8b Bourgeois J, Dion I, Cebrowski PH, Loiseau F, Bédard A.-C, Beauchemin AM. J. Am. Chem. Soc. 2009; 131: 874

      For previous syntheses on the preparation of 3-[(4-methoxybenzyl)oxy]propanal in two or three steps from propanediol, see:
    • 9a Oka T, Murai A. Tetrahedron 1998; 54: 1
    • 9b Dias LC, de Oliveira LG, de Sousa MA. Org. Lett. 2003; 5: 265
    • 9c Chavan SP, Harale KR. Tetrahedron Lett. 2012; 53: 4683

    • For the preparation of 9b in two steps from 3-[(4-methoxybenzyl)oxy]propanal, see:
    • 9d Sato E, Tanabe Y, Nakajima N, Ohkubo A, Suenaga K. Org. Lett. 2016; 18: 2047
    • 9e Yadav JS, Dutta P. J. Org. Chem. 2016; 81: 1786
  • 10 Nguyen TL, Ferrié L, Figadère B. Tetrahedron Lett. 2016; 57: 5286
    • 11a Horner L, Hoffmann H, Wippel HG. Chem. Ber. 1958; 91: 61
    • 11b Wadsworth WS, Emmons WD. J. Am. Chem. Soc. 1961; 83: 1733
    • 11c Bisceglia JA, Orelli LR. Curr. Org. Chem. 2015; 19: 744
  • 12 Luche JL. J. Am. Chem. Soc. 1978; 100: 2226
  • 13 Corey EJ, Bakshi RK, Shibata S. J. Am. Chem. Soc. 1987; 109: 5551
  • 14 Chataigner I, Lebreton J, Durand D, Guingant A, Villiéras J. Tetrahedron Lett. 1998; 39: 1759
    • 15a Oger C, Bultel-Poncé V, Guy A, Durand T, Galano J.-M. Eur. J. Org. Chem. 2012; 2621
    • 15b Kim S, Lawson JA, Praticò D, FitzGerald GA, Rokach J. Tetrahedron Lett. 2002; 43: 2801
    • 15c Kojima K, Amemiya S, Koyama K, Sakai K. Chem. Pharm. Bull. 1983; 31: 3775
    • 15d Kojima K, Koyama K, Amemiya S. Tetrahedron 1985; 41: 4449
    • 15e Yadav JS, Valli MY, Prasad AR. Pure Appl. Chem. 2001; 73: 1157
    • 15f Tungen JE, Aursnes M, Dalli J, Arnardottir H, Serhan CN, Hansen TV. Chem. Eur. J. 2014; 20: 14575
  • 16 Aursnes M, Tungen JE, Colas RA, Vlasakov I, Dalli J, Serhan CN, Hansen TV. J. Nat. Prod. 2015; 78: 2924
  • 17 For previous preparation of 15, see: Suganuma Y, Saito S, Kobayashi Y. Synlett 2019; 30: 338
  • 18 Roy J, Oger C, Thireau J, Roussel J, Mercier-Touzet O, Faure D, Pinot E, Farah C, Taber DF, Cristol J.-P, Lee JC.-Y, Lacampagne A, Galano J.-M, Durand T, Le Guennec J.-Y. Free Radical Biol. Med. 2015; 86: 269
  • 19 Pavlíčková T, Bultel-Poncé V, Guy A, Rocher A, Reversat G, Vigor C, Durand T, Galano J.-M, Jahn U, Oger C. Chem. Eur. J. 2020; 26: 10090
  • 20 Ladame S, Bardet M, Périé J, Willson M. Bioorg. Med. Chem. 2001; 9: 773
  • 21 Iversen T, Bundle DR. J. Chem. Soc., Chem. Commun. 1981; 1240