Synthesis 2022; 54(06): 1661-1669
DOI: 10.1055/a-1671-6602
paper

A Concise Copper-Catalyzed Oxytrifluoromethylation of Allyl Alcohols

Longhui Chen
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
,
Zequn Yang
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
,
Qi Sun
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
,
Minjie Guo
b   Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China
,
Xintong Feng
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
,
Xiangyang Tang
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
,
Guangwei Wang
a   Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
› Author Affiliations
We are grateful for the financial support from the Natural Science Foundation of Tianjin (19JCYBJC20200) and Tianjin University for support of this research.


In deep memory of Dr. Ei-ichi Negishi.

Abstract

An efficient oxytrifluoromethylation of 1-aryl-substituted allyl alcohols has been developed using Togni’s reagent II as a trifluoromethylation reagent and copper(I) chloride as a catalyst. This reaction proceeded through a one-pot process of trifluoromethylation followed by nucleophilic attack of the vicinal hydroxyl group. This strategy features good diastereoselectivity and broad substrate scope, which provides a facile access to various 2-aryl-3-(2,2,2-trifluoroethyl)oxiranes.

Supporting Information



Publication History

Received: 18 September 2021

Accepted after revision: 18 October 2021

Accepted Manuscript online:
18 October 2021

Article published online:
30 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1b Jeschke P. ChemBioChem 2004; 5: 570
    • 1c Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
    • 1d O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
    • 1e Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 2 Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer RJ, Pleven E, Scheiner J. Nature 1957; 179: 663

    • For selected reviews, see:
    • 3a Ma J.-A, Cahard D. Chem. Rev. 2004; 104: 6119
    • 3b Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
    • 3c Ma J.-A, Cahard D. J. Fluorine Chem. 2007; 128: 975
    • 3d Feruya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • 3e Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 3f Liu H, Gu Z, Jiang X. Adv. Synth. Catal. 2013; 355: 617

      For selected examples, see:
    • 4a Eisenberger P, Gischig S, Togni A. Chem. Eur. J. 2006; 12: 2579
    • 4b Niedermann K, Welch JM, Koller R, Cvengroš J, Santschi N, Battaglia P, Togni A. Tetrahedron 2010; 66: 5753
    • 4c Pair E, Monteriro N, Bouyssi D, Baudoin O. Angew. Chem. Int. Ed. 2013; 52: 5346
    • 4d Matoušek V, Pietrasiak E, Schwenk R, Togni A. J. Org. Chem. 2013; 78: 6763
    • 4e Andries-Ulmer A, Brunner C, Rehbein J, Gulder T. J. Am. Chem. Soc. 2018; 140: 13034
    • 4f Li C, Xue L, Zhou J, Zhao Y, Han G, Hou J, Song Y, Liu Y. Org. Lett. 2020; 22: 3291

      For selected reviews, see:
    • 5a Chen P, Liu G. Synthesis 2013; 45: 2919
    • 5b Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036
    • 5c Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
    • 5d Egami H, Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294

    • For selected examples, see:
    • 5e Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed. 2007; 46: 754
    • 5f Koller R, Stanek K, Stolz D, Aardoom R, Niedermann K, Togni A. Angew. Chem. Int. Ed. 2009; 48: 4332
    • 5g Niedermann K, Früh N, Vinogradova E, Wiehn MS, Moreno A, Togni A. Angew. Chem. Int. Ed. 2011; 50: 1059
    • 5h Früh N, Togni A. Angew. Chem. Int. Ed. 2014; 53: 10813
    • 5i Katayev D, Matoušek V, Koller R, Togni A. Org. Lett. 2015; 17: 5898
    • 5j Kalim J, Duhail T, Le T.-N, Vanthuyne N, Anselmi E, Togni A, Magnier E. Chem. Sci. 2019; 10: 10516

      For selected examples, see:
    • 6a Wang X, Zhao S, Liu J, Zhu D, Guo M, Tang X, Wang G. Org. Lett. 2017; 19: 4187
    • 6b Li X.-T, Gu Q.-S, Dong X.-Y, Meng X, Liu X.-Y. Angew. Chem. Int. Ed. 2018; 57: 7668
    • 6c He F.-S, Chen X, Yang S, Zhang J, Xia H, Wu J. Org. Chem. Front. 2018; 5: 2437
    • 6d Shu C, Mega RS, Andreassen BJ, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 15430
    • 6e Gao C, Li B, Geng X, Zhou Q, Zhang X, Fan X. Green Chem. 2019; 21: 5113
    • 6f Wang J, Sun K, Chen X, Chen T, Liu Y, Qu L, Zhao Y, Yu B. Org. Lett. 2019; 21: 1863
    • 6g Mou X.-Q, Rong F.-M, Zhang H, Chen G, He G. Org. Lett. 2019; 21: 4657
    • 6h Wang L, Qi C, Cheng R, Liu H, Xiong W, Jiang H. Org. Lett. 2019; 21: 7386
    • 6i Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
    • 6j Meng F, Fang Q, Yuan W, Xu N, Cao S, Chun J, Li J, Zhang H, Zhu Y. Org. Chem. Front. 2020; 7: 1358
    • 7a Shen Y, Liao Q, Qiu W. J. Chem. Soc., Chem. Commun. 1988; 1309
    • 7b Shimizu M, Fujimoto T, Minezaki H, Hata T, Hiyama T. J. Am. Chem. Soc. 2001; 123: 6947
    • 7c Shimizu M, Fujimoto T, Liu X, Minezaki H, Hata T, Hiyama T. Tetrahedron 2003; 59: 9811
    • 7d Yamazaki T, Ichige T, Kitazume T. Org. Lett. 2004; 6: 4073
    • 7e Obinata R, Kawasaki-Takasuka T, Yamazaki T. Org. Lett. 2010; 12: 4316
  • 8 Fuchikami T, Shibata Y, Urata H. Chem. Lett. 1987; 16: 521
  • 9 Kim E, Choi S, Kim H, Cho EJ. Chem. Eur. J. 2013; 19: 6209
  • 10 Zhu R, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
    • 11a Chen H, Wang X, Guo M, Zhao W, Tang X, Wang G. Org. Chem. Front. 2017; 4: 2403
    • 11b Wang X, Li M, Guo M, Tang X, Wang G. Adv. Synth. Catal. 2018; 360: 2151
    • 11c Wang X, Liu J, Yu Z, Guo M, Tang X, Wang G. Org. Lett. 2018; 20: 6516
    • 11d Yuan F, Zhou S, Yang Y, Guo M, Tang X, Wang G. Org. Chem. Front. 2018; 5: 3306
    • 11e Yang Y, Yuan F, Ren X, Wang G, Zhao W, Tang X, Guo M. J. Org. Chem. 2019; 84: 4507
    • 11f Wang L, Chen H, Zhao W, Wang G. Synlett 2021; 32: 1029
  • 12 The cis- and trans-diastereomers were determined by comparison with reported spectra in ref. 10.
  • 13 Chen Z.-M, Bai W, Wang S.-H, Yang B.-M, Tu Y.-Q, Zhang F.-M. Angew. Chem. Int. Ed. 2013; 52: 9781
    • 14a Smith DM, Golding BT, Radom L. J. Am. Chem. Soc. 2001; 123: 1664
    • 14b Kinoshita K, Kawata M, Ogura K.-i, Yamasaki A, Watanabe T, Komoto N, Hieda N, Yamanishi M, Tobimatsu T, Toraya T. Biochemistry 2008; 47: 3162
    • 15a Huang L, Qi J, Wu X, Wu W, Jiang H. Chem. Eur. J. 2013; 19: 15462
    • 15b Vellakkaran M, Andappan MM. S, Kommu N. Green Chem. 2014; 16: 2788
    • 15c Liao J, Zhang Z, Tang X, Wu W, Guo W, Jiang H. J. Org. Chem. 2015; 80: 8903
  • 16 Hatcher LQ, Karlin KD. In Advances in Inorganic Chemistry, Vol. 58. van Eldik R, Reedijk J. Elsevier/Academic Press; Amsterdam: 2006: 131-184
  • 17 Spoehrle SS. M. S, West TH, Taylor JE, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2017; 139: 11895
  • 18 Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
  • 19 Sun K, Li G, Guo S, Zhang Z, Zhang G. Org. Biomol. Chem. 2021; 19: 375
  • 20 Yi N, Zhang H, Xu C, Deng W, Wang R, Peng D, Zeng Z, Xiang J. Org. Lett. 2016; 18: 1780