Synthesis
DOI: 10.1055/a-1681-4164
paper

Functionalized Bipyrroles and Pyrrolyl-Aminopyrones from Acylethynylpyrroles and Diethyl Aminomalonate

Maxim D. Gotsko
a  A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
,
Ivan V. Saliy
a  A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
,
Lyubov N. Sobenina
a  A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
,
Igor A. Ushakov
a  A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
,
Victoriya V. Kireeva
b  Biomedical Research and Technology Department of the Irkutsk Scientific Center of the Russian Academy of Sciences, 283 Lermontov Str., 664033 Irkutsk, Russian Federation
,
Boris A. Trofimov
a  A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk 664033, Russian Federation
› Author Affiliations
This work was supported by the Russian Science Foundation (grant no. 19-73-10063).


Abstract

An efficient method for the synthesis of 1H,1′H-2,3′-bi­pyrroles (up to 72% yield) by the cyclocondensation of easily available 2-(acylethynyl)pyrroles with diethyl aminomalonate hydrochloride has been developed. The reaction proceeds under reflux in MeCN (6 h) in the presence of Cs2CO3. Under the same conditions, 2-(acylethynyl)pyrroles with bulky (benzyl and octyl) substituents at nitrogen atom react with diethyl aminomalonate to afford 1H,2′H-2,3′-bipyrroles and pyrrolyl-aminopyrones.

Supporting Information



Publication History

Received: 05 October 2021

Accepted: 28 October 2021

Publication Date:
28 October 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Vitaku E, Smith DT, Njardarson T. J. Med. Chem. 2014; 57: 10257
    • 1b Martins P, Jesus J, Santos S, Raposo L, Roma-Rodrigues C, Baptista P, Fernandes A. Molecules 2015; 20: 16852
    • 1c Hosseinzadeh Z, Ramazani A, Razzaghi-Asl N. Curr. Org. Chem. 2018; 22: 2256
    • 1d Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
    • 1e Kerru N, Gummidi L, Maddila S, Gangu K, Jonnalagadda S. Molecules 2020; 25: 1909
    • 2a Baumann M, Baxendale IR, Ley SV, Nikbin N. Beilstein J. Org. Chem. 2011; 7: 442
    • 2b Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. RSC Adv. 2015; 5: 15233
    • 2c Gholap S. Eur. J. Med. Chem. 2016; 110: 13
    • 2d Kaur R, Rani V, Abbot V, Kapoor Y, Konar D, Kumar K. J. Pharm. Chem. Sci. 2017; 1: 17
    • 2e Ahmad S, Alam O, Naim M, Shaquiquzzaman M, Alam M, Iqbal M. Eur. J. Med. Chem. 2018; 157: 527
    • 2f Li Petri G, Spanò V, Spatola R, Holl R, Raimondi M, Barraja P, Montalbano A. Eur. J. Med. Chem. 2020; 208: 112783
  • 3 Kleemann A, Engl J, Kutscher B, Reichert D. Pharmaceutical Substances: Synthesis, Patents, Applications, 4th ed. Georg Thieme; Stuttgart: 2001
    • 4a Kral V, Davis J, Andrievsky A, Kralova J, Synytsya A, Pouckova P, Sessler JL. J. Med. Chem. 2002; 45: 1073
    • 4b Regourd J, Al-Sheikh Ali A, Thompson A. J. Med. Chem. 2007; 50: 1528
    • 4c Chawrai SR, Williamson NR, Salmond GP. C, Leeper FJ. Chem. Commun. 2008; 1862
    • 4d Anwar MM, Shalaby M, Embaby AM, Saeed H, Agwa MM, Hussein A. Sci. Rep. 2020; 10: 14706 https://doi.org/10.1038/s41598-020-71157-w
  • 5 Jolicoeur B, Lubell WD. Can. J. Chem. 2008; 86: 213
  • 6 Kancharla P, Kelly JX, Reynolds KA. J. Med. Chem. 2015; 58: 7286
  • 7 Cavalcanti BC, Junior HV. N, Seleghim MH. R, Berlinck RG. S, Cunha GM. A, Moraes MO, Pessoa C. Chem. Biol. Interact. 2008; 174: 155
  • 8 Fürstner A, Reinecke K, Prinz H, Waldmann H. ChemBioChem 2004; 5: 1575
    • 9a Seganish JL, Davis JT. Chem. Commun. 2005; 5781
    • 9b Saez Diaz RI, Regourd J, Santacroce PV, Davis JT, Jakeman DL, Thompson A. Chem. Commun. 2007; 2701
    • 10a Amari M, Fodili M, Nedjar-Kolli B, Hoffmann A, Perie J. J. Heterocycl. Chem. 2002; 39: 811
    • 10b Lee J. Mar. Drugs 2015; 13: 1581
    • 10c Stefane B, Perdih A, Pevec A, Solmajer T, Kocevar M. Eur. J. Org. Chem. 2010; 5870
    • 10d Cai Q. Chin. J. Chem. 2019; 37: 946
  • 11 Praveen C, Ayyanar A, Perumal PT. Bioorg. Med. Chem. Lett. 2011; 21: 4170
  • 12 Murray SG. C, Barr MN. M, Fan CX.-L, Williams MI. T, Allan MK, Martin RL. J, Geoffrey HM, John GR. Patent WO/2005/016919, 2005
    • 13a Tao L, Qingfa Z, Shen Z, Jihong Q, Weiwei Z, Luyong Z, Yan M. Patent CN101928279A, 2010
    • 13b Chu X.-P, Zhou Q.-F, Zhao S, Ge F.-F, Fu M, Chen J.-P, Lu T. Chin. Chem. Lett. 2013; 24: 120
    • 14a Trofimov BA, Stepanova ZV, Sobenina LN, Mikhaleva AI, Ushakov IA. Tetrahedron Lett. 2004; 45: 6513
    • 14b Trofimov BA, Sobenina LN. Targets Heterocycl. Syst. 2009; 13: 92
    • 14c Sobenina LN, Trofimov BA. Molecules 2020; 25: 2490
  • 15 Sammes MP, Chung MW, Katritzky A. J. Chem. Soc., Perkin Trans. 1 1985; 1773
  • 16 Anguera G, Brewster JT. II, Sánchez-García D, Sessler J. Macroheterocycles 2018; 11: 227
    • 17a Sprio V, Petruso S, Ceraulo L, Lamartina L. J. Heterocycl. Chem. 1977; 14: 797
    • 17b Silvestri G, Gambino S, Filardo G, Petruso S, Caronna S, Sprio V. J. Heterocycl. Chem. 1989; 26: 489
    • 17c Brandsma L, Nedolya NA, Verkruijsse HD, Trofimov BA. Chem. Heterocycl. Compd. 2000; 36: 876
    • 17d Zaitsev AB, Schmidt EY, Mikhaleva AM, Afonin AV, Ushakov IA. Chem. Heterocycl. Compd. 2005; 41: 722
    • 17e Dohi T, Morimoto K, Maruyama A, Kita Y. Org. Lett. 2006; 8: 2007
    • 17f Diari K, Tripathy S, Attardo G, Lavallee J.-F. Tetrahedron Lett. 2006; 47: 2605
    • 17g Kita Y, Dohi T, Morimoto K, Ito M. Synthesis 2007; 2913
    • 17h Dohi T, Morimoto K, Ogawa C, Fujioka H, Kita Y. Chem. Pharm. Bull. 2009; 57: 710
    • 17i Dohi T, Ito M, Yamaoka N, Morimoto K, Fujioka H, Kita Y. Tetrahedron 2009; 65: 10797
    • 17j Kita Y, Morimoto K, Ito M, Ogawa C, Goto A, Dohi T. J. Am. Chem. Soc. 2009; 131: 1668
    • 17k Gribble G, Lopchuk J, Song M, Butler B. Synthesis 2015; 47: 2776
    • 17l Petrova OV, Sagitova EF, Sobenina LN, Ushakov IA, Borodina TN, Smirnov VI, Trofimov BA. Tetrahedron Lett. 2016; 57: 3652
    • 17m Moustafa G, Kalmouch A, Rdwan M, Omran M, Sharaky M. Egypt. J. Chem. 2020; 63: 4409
    • 18a Hachiya I, Shibuya H, Shimizu M. Tetrahedron Lett. 2003; 44: 2061
    • 18b Liu W.-B, Jiang H.-F, Qiao C.-L. Tetrahedron 2009; 65: 2110
    • 18c Hu B, Meng L, Hao X.-L, Liang M, Xue S. Synth. Commun. 2011; 41: 3147
    • 18d Cao H, Zhong H, Lin Y, Yang L. Tetrahedron 2012; 68: 4042
    • 18e Gotsko MD, Saliy IV, Sobenina LN, Ushakov IA, Trofimov BA. Tetrahedron Lett. 2019; 60: 151126
  • 19 Kim H, Oh K. Org. Lett. 2017; 19: 4904
  • 20 Lu T, Zhou Q.-F, Zhu Y, Tang W.-F. Synthesis 2009; 211
    • 21a Tanaka H, Mizota I, Shimizu M. Org. Lett. 2014; 16: 2276
    • 21b Nakahama K, Suzuki M, Ozako M, Mizota I, Shimizu M. Asian J. Org. Chem. 2018; 7: 910
  • 22 Zhu Y, Gong Y. J. Org. Chem. 2014; 80: 490
  • 23 Fan W, Ma S. Angew. Chem. Int. Ed. 2014; 53: 14542