Klin Monbl Augenheilkd 2022; 239(12): 1483-1488
DOI: 10.1055/a-1699-2679
Klinische Studie

Influence of Biometric Data on Planning Strabismus Surgery

Article in several languages: deutsch | English
1   Ophthalmology, Vienna Institute for Research in Ocular Surgery (VIROS), Hanusch-Krankenhaus, Wien, Österreich
2   Department of Ophthalmology and Optometry, Kepler University Hospital GmbH, Johannes Kepler University Linz, Österreich
,
Katharina Malek
1   Ophthalmology, Vienna Institute for Research in Ocular Surgery (VIROS), Hanusch-Krankenhaus, Wien, Österreich
,
Thomas Kaltofen
3   Research Institute für Symbolic Computation – Software GmbH, Hagenberg, Österreich
,
Siegfried Priglinger
4   Institut Integriert Studieren, Johannes Kepler University Linz, Österreich
,
Siegmund Priglinger
4   Institut Integriert Studieren, Johannes Kepler University Linz, Österreich
,
Annette Harrer
1   Ophthalmology, Vienna Institute for Research in Ocular Surgery (VIROS), Hanusch-Krankenhaus, Wien, Österreich
,
Oliver Findl
1   Ophthalmology, Vienna Institute for Research in Ocular Surgery (VIROS), Hanusch-Krankenhaus, Wien, Österreich
,
Gerhard Partik
1   Ophthalmology, Vienna Institute for Research in Ocular Surgery (VIROS), Hanusch-Krankenhaus, Wien, Österreich
› Author Affiliations

Abstract

Purpose To evaluate the influence of optical biometry data (axial eye length, anterior chamber depth) on planning strabismus surgery using a simulation software and partial least squares regression.

Methods This retrospective study included patients who had undergone strabismus surgery in one eye involving only the horizontal eye muscles. Furthermore, optical biometry had been performed and the extent of strabismus had been measured pre- and postoperatively. In the next step the strabismus surgery was simulated (See++, RISC, Austria) with and without axial eye length data. In the last step, anatomical data of the eye were used and their influence on the postoperative extent of strabismus was evaluated using partial least squares regression and boot strapping.

Results Of 97 patients, 92 were included in the analysis. In all cases the extent of strabismus was reduced by at least 25% and in 60% of the cases the reduction was at least 75%. Taking the axial eye length into account improved the simulation slightly (change of surgical planning: 0.30 mm, standard deviation 1.65 mm).

Discussion The simulation model used showed that including the axial eye length is useful for strabismus surgery planning. However, the anterior chamber depth/axial eye length was found to have a significantly greater impact.



Publication History

Received: 12 May 2021

Accepted: 15 November 2021

Article published online:
23 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur/References

  • 1 Kaufmann H, Steffen H. Strabismus. 4. Aufl.. Stuttgart, New York: Thieme; 2012
  • 2 Priglinger S, Buchberger M. Augenmotilitätsstörungen: Computerunterstützte Diagnose und Therapie. Heidelberg: Springer; 2004: 6-10
  • 3 Milburn PD. You Still Canʼt Tell One If You See One. Proceedings of the First Australasian Biomechanics Conference. Sydney, Australia, 1996: 116 – 117.
  • 4 Fricke J, Neugebauer A. [Basic principles of eye muscle surgery]. Klin Monbl Augenheilkd 2008; 225: R87-R97
  • 5 Steffen H. [Eye muscle surgery]. Ophthalmologe 2015; 112: 281-291
  • 6 Krzizok T, Graf M, Kaufmann H. [Effect of bulbus length of reduction of squint angle after suture fixation]. Ophthalmologe 1994; 91: 68-76
  • 7 Beisse F, Koch M, Uhlmann L. et al. Consideration of eyeball length and prismatic side-effects of spectacle lenses in strabismus surgery–a randomised, double-blind interventional study. Graefes Arch Clin Exp Ophthalmol 2020; 258: 1319-1326
  • 8 Gräf M, Krzizok T, Kaufmann H. [Effect of axial bulbus length and preoperative squint angle on the effect of horizontal combined squint operations]. Ophthalmologe 1994; 91: 62-67
  • 9 Mayr H. Virtual eye muscle surgery based upon biomechanical models. Stud Health Technol Inform 2001; 81: 305-311
  • 10 Hirnschall N, Amir-Asgari S, Maedel S. et al. Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements. Invest Ophthalmol Vis Sci 2013; 54: 5196-5203
  • 11 Hirnschall N, Norrby S, Weber M. et al. Using continuous intraoperative optical coherence tomography measurements of the aphakic eye for intraocular lens power calculation. Br J Ophthalmol 2015; 99: 7-10
  • 12 Kushner BJ, Qui CO, Lucchese NJ. et al. Axial length estimation in strabismic patients. J Pediatr Ophthalmol Strabismus 1996; 33: 257-261
  • 13 Broniarczyk-Loba A, Suprunowicz I, Nowakowska O. [Squint angle, eyeball length and surgical results in horizontal strabismus]. Klin Oczna 1994; 96: 206-209
  • 14 Kushner BJ, Fisher MR, Lucchese NJ. et al. Factors influencing response to strabismus surgery. Arch Ophthalmol 1993; 111: 75-79
  • 15 Kim S, Suh Y, Cho YA. Simple formula for determining the location of the equator. Clin Exp Ophthalmol 2005; 33: 126-128
  • 16 Erb-Eigner K, Hirnschall N, Hackl C. et al. Predicting Lens Diameter: Ocular Biometry With High-Resolution MRI. Invest Ophthalmol Vis Sci 2015; 56: 6847-6854