Synlett 2022; 33(01): 52-56
DOI: 10.1055/a-1699-4766
cluster
Editorial Board Cluster

Pd-Catalyzed Arylation of 1,2-Amino Alcohol Derivatives via β-Carbon Elimination

Miriam Sau
a   Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans 16, 43007, Tarragona, Spain
,
Miquel A. Pericàs
a   Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans 16, 43007, Tarragona, Spain
b   Departament de Química Inorgànica I Orgànica, Universitat de Barcelona, Martí I Franquès, 1-11, 08028 Barcelona, Spain
,
Ruben Martin
a   Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Paisos Catalans 16, 43007, Tarragona, Spain
c   ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
› Author Affiliations
We thank the Institut Català d’Investigació Química (ICIQ), the Ministerio de Ciencia, Innovación y Universidades (MCI, FEDER/MCI – AEI/PGC2018-096839-B-I00 and PID2019-109236RB-I00), the European Research Council (ERC) under European Union’s Horizon 2020 research and innovation program (883756), Ministerio de Ciencia e Innovación (MICINN) through Severo Ochoa Excellence Accreditation 2020–2023 (CEX2019-000925-S, MIC/AEI), and the Generalitat de Catalunya (CERCA Program) for financial support.


Abstract

Herein, we describe a Pd-catalyzed arylation of 1,2-amino alcohols with aryl halides enabled by a retroallylation manifold. This protocol constitutes a new entry point to β-arylated aldehydes via the intermediacy of in situ generated enamine intermediates. The protocol is characterized by its exquisite regioselectivity profile and broad substrate scope – including challenging substrate combinations – even in an enantioselective manner.

Supporting Information



Publication History

Received: 16 September 2021

Accepted after revision: 17 November 2021

Accepted Manuscript online:
17 November 2021

Article published online:
14 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 de Meijere A, Bräse S, Oestreich M. Metal-Catalyzed Cross-Coupling Reactions and More . Wiley-VCH; Weinheim: 2014

    • For selected reviews on cross-electrophile coupling reactions, see:
    • 2a Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
    • 2b Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
    • 2c Weix D. J. Acc. Chem. Res. 2015; 48: 1767
    • 2d Wang X, Dai Y, Gong H. Top. Curr. Chem. 2016; 374: 43
    • 2e Knappke CE. I, Grupe S, Gärtner S, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828

      For selected reviews on C–H functionalization, see:
    • 3a McMurray L, O’Hara F, Gaunt JM. Chem. Soc. Rev. 2011; 40: 1885
    • 3b Hartwig FJ. Chem. Soc. Rev. 2011; 40: 1885
    • 3c Lyons WT, Sanford SM. Chem Rev. 2010; 110: 1147
    • 3d Chen X, Engle KM, Wang DH, Yu J.-Q. Angew. Chem. Int Ed. 2009; 48: 5094 ; and references therein

      For selected reviews on C–C functionalization, see:
    • 4a Murakami M, Matsuda T. Chem. Commun. 2011; 47: 1100
    • 4b Seiser T, Cramer N. Org. Biomol. Chem. 2009; 7: 2835
    • 4c Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
    • 4d Jun C.-H. Chem. Soc. Rev. 2004; 33: 610
    • 4e Coe WJ, Dermenci A, Dong G. Org. Chem. Front. 2014; 1: 567
    • 4f Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
    • 4g Murakami M, Ishida N. J. Am. Chem. Soc. 2016; 138: 13579
    • 4h McDonald TR, Mills LR, West MS, Rousseaux SA. L. Chem. Rev. 2021; 121: 3
    • 4i Murakami M, Ishida N. Chem. Rev. 2021; 121: 264
    • 4j Nogi K, Yorimitsu H. Chem. Rev. 2021; 121: 345
    • 4k Lutz MD. R, Morandi B. Chem. Rev. 2021; 121: 300

      For selected examples, see:
    • 5a Satoh T, Jones WD. Organometallics 2001; 20: 2916
    • 5b Matsuda T, Tsuboi T, Murakami M. J. Am. Chem. Soc. 2007; 129: 12596
    • 5c Xue Y, Dong G. J. Am. Chem. Soc. 2021; 143: 8272
    • 5d Hou S.-H, Prichina AY, Dong G. Angew. Chem. Int. Ed. 2021; 60: 13057
    • 5e Hou S. -H, Yu X, Zhang R, Deng L, Zhang M, Prichina AY, Dong G. J. Am. Chem. Soc. 2020; 142: 13180
    • 5f Souillart L, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 9640
    • 5g Waibel M, Cramer N. Angew. Chem. Int. Ed. 2010; 49: 4455
    • 5h Seiser T, Cramer N. J. Am. Chem. Soc. 2010; 132: 5340
    • 5i Okumura S, Sun F, Ishida N, Murakami M. J. Am Chem. Soc. 2017; 139: 12414
    • 5j Yada A, Fujita S, Murakami M. J. Am. Chem. Soc. 2014; 136: 7217
    • 5k Ishida N, Ikemoto W, Murakami M. J. Am. Chem. Soc. 2014; 136: 5912

      For selected examples, see:
    • 6a Rusina A, Vlcek AA. Nature 1965; 206: 295
    • 6b Wong W, Singer SJ, Pitts WD, Watkins SF, Baddley WH. J. Chem. Soc., Chem. Commun. 1972; 672
    • 6c Song L, Arif AM, Stang PJ. Organometallics 1990; 9: 2792
    • 6d Amii H, Ito Y, Murakami M. Nature 1994; 370: 540
    • 6e Amii H, Shigeto K, Ito Y, Murakami M. J. Am. Chem. Soc. 1996; 118: 8285
    • 6f Takahashi K, Amii H, Ito Y, Murakami M. J. Am. Chem. Soc. 1997; 119: 9307
    • 6g Huffman MA, Liebeskind LS. J. Am. Chem. Soc. 1993; 115: 4895
    • 6h Ho KY. T, Aïssa C. Chem. Eur. J. 2012; 18: 3486
    • 6i Ashida S, Matsuda T, Murakami M. J. Am. Chem. Soc. 2005; 127: 6932
    • 6j Kumar P, Zhang K, Louie J. Angew. Chem. Int. Ed. 2012; 51: 8602
    • 6k Deng L, Dong G. Trends Chem. 2020; 2: 183

      For selected examples, see:
    • 7a Chatani N, Ie Y, Kakiuchi F, Murai S. J. Am. Chem. Soc. 1999; 121: 8645
    • 7b Jun C.-H, Suggs WJ. J. Am. Chem. Soc. 1986; 108: 4679
    • 7c Jun C.-H, Suggs WJ. J. Am. Chem. Soc. 1984; 106: 3054
    • 7d Liou SY, van der Boom ME, Milstein D. Chem. Commun. 1998; 687
    • 7e Zhu J, Zhang R, Dong G. Nat. Chem. 2021; 13: 836
    • 7f Li H, Li Y, Zhang XS, Chen K, Wang X, Shi ZJ. J. Am. Chem. Soc. 2011; 133: 15244
    • 7g Qiu Y, Scheremetjew A, Ackermann L. J. Am. Chem. Soc. 2019; 141: 2731

      For selected examples, see:
    • 8a Wang Y.-F, Xu Y.-J, Chiba S. J. Am. Chem. Soc. 2009; 131: 12886
    • 8b Kang JW, Moseley K, Maitlis PS. J. Am. Chem. Soc. 1969; 91: 5970
    • 8c Huffman MA, Liebeskind LS. J. Am. Chem. Soc. 1991; 113: 2771
    • 8d Yoshikawa S, Aoki K, Kiji J, Furukawa J. Tetrahedron 1974; 30: 405
    • 8e Nishimura T, Katoh T, Hayashi T. Angew. Chem. Int. Ed. 2007; 46: 4937
  • 9 Kodoi K, Nishinaga E, Okada T, Morisaki Y, Watanabe Y, Kondo T, Mitsudo T. J. Am. Chem. Soc. 1998; 120: 5587

    • For selected references, see:
    • 10a Hayashi S, Hirano K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2006; 128: 2210
    • 10b Yorimitsu H, Oshima K. Bull. Chem. Soc. Jpn. 2009; 82: 778 ; and references therein

      For selected references, see:
    • 11a Ziadi A, Martin R. Org. Lett. 2012; 14: 1266
    • 11b Gutiérrez-Bonet A, Flores-Gaspar A, Martin R. J. Am. Chem. Soc. 2013; 135: 12576
    • 11c Ziadi A, Correa A, Martin R. Chem. Commun. 2013; 49: 4286
    • 11d Julià-Hernández F, Ziadi A, Nishimura A, Martin R. Angew. Chem. Int. Ed. 2015; 54: 9537
    • 11e Cong F, Lyv XY, Day CS, Martin R. J. Am. Chem. Soc. 2020; 142: 20594
    • 12a Lee HS, Kang SH. Synlett 2004; 1673
    • 12b Oguni N, Omi T. Tetrahedron Lett. 1984; 25: 2823
  • 13 For an interesting study on the fragmentation of amino alcohol radical cations, see: Burton RD, Bartberger MD, Zhang Y, Eyler JR, Schanze KS. J. Am. Chem. Soc. 1996; 118: 5655
    • 14a Grob CA, Baumann W. Helv. Chim. Acta 1955; 38: 594
    • 14b Grob CA, Kiefer HR, Lutz HJ, Wilkens HJ. Helv. Chim. Acta 1967; 60: 416
    • 14c Mölm D, Flörke U, Risch N. Eur. J. Org. Chem. 1998; 2185
    • 14d Santaballana JA, Armesto CL, Canle M, García MV. Chem. Soc. Rev. 1998; 27: 453

      In our group, we have observed that 1,2-amino alcohols might undergo unproductive C–C bond fragmentation under basic conditions. For some examples, see:
    • 15a Reddy KS, Solà L, Moyano A, Pericàs MA, Riera A. Synthesis 2000; 165
    • 15b Pericàs MA, Castellnou D, Rodríguez I, Riera A, Solà L. Adv. Synth. Catal. 2003; 345: 1305
    • 15c Osorio-Planes L, Rodríguez-Escrich C, Pericàs MA. Org. Lett. 2012; 14: 1816

      For selected references, see:
    • 16a Nishimura T, Uemura S. J. Am. Chem. Soc. 1999; 121: 11010
    • 16b Nishimura T, Uemura S. J. Am. Chem. Soc. 2000; 122: 12049
    • 16c Reddy KC, Larock CR. Org. Lett. 2000; 2: 3325
    • 16d Zhang J, Ma S. Angew. Chem. Int. Ed. 2003; 42: 183
    • 16e Matsumura S, Maeda Y, Nishimura T, Uemura S. J. Am. Chem. Soc. 2003; 125: 8862
    • 16f Seiser T, Cramer N. J. Am. Chem. Soc. 2010; 132: 5340
    • 16g Ziadi A, Martin R. Org. Lett. 2012; 14: 1266
    • 16h Ziadi A, Correa A, Martin R. Chem. Commun. 2013; 49: 4286
    • 16i Juliá-Hernández F, Ziadi A, Nishimura A, Martin R. Angew. Chem. Int. Ed. 2015; 54: 9537
  • 17 Unfortunately, the utilization of E isomers failed to provide even traces of the targeted compound. These results can be rationalized on the basis of steric hindrance between the Pd center and the trans substituent of the homoallylic alcohol at the chairtype transition state required for the retroallylation to occur.
  • 18 The utilization of Pd(PPh3)4 resulted in 73% yield of 3a.
  • 19 Representative Procedure An oven-dried Schlenk tube containing a stirring bar was charged with 1a (75 mg, 0.234 mmol), Cs2CO3 (1.3 equiv), and 2a (48 mg, 0.234 mmol). The Schlenk tube was then evacuated and backfilled with argon (this sequence was repeated three times). Then, a solution of Pd(OAc)2 (2 mol%) and PPh3 (4 mol%) in THF (1.0 mL) was subsequently added by syringe. The mixture was warmed up to 90 °C and stirred for 12–16 h. Then, AcOEt (10 mL) was added, and the mixture was filtered through a pad of Celite, and the crude was purified by conventional flash chromatography (hexanes/diethyl ether), providing 39.5 mg (85% yield) of 2a as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 9.75 (t, J = 2.0 Hz, 1 H), 7.84–7.78 (m, 3 H), 7.67–7.64 (m, 1 H), 7.50–7.41 (m, 2 H), 7.40–7.35 (m, 1 H), 3.54 (h, J = 7.0 Hz, 1 H), 2.86 (ddd, J = 16.7, 7.0, 2.0 Hz, 1 H), 2.75 (ddd, J = 16.7, 7.0, 2.0 Hz, 1 H), 1.42 (d, J = 7.0 Hz, 3 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 201.7, 142.8, 133.5, 132.3, 128.4, 127.6, 126.1, 125.5, 125.4, 124.9, 51.6, 34.3, 22.1 ppm.
  • 20 See the Supporting Information for details.