Synthesis
DOI: 10.1055/a-1701-6700
paper

Switchable Synthesis of Sulfoxides, Sulfones and Thiosulfonates through Selectfluor-Promoted Oxidation with H2O as O-Source

Xuqiang Guo
,
Xuejun Sun
,
Mengmeng Jiang
,
Yulei Zhao
We thank the Natural Science Foundation of Shandong Province (ZR2018MB014 and ZR2018BB026), College Students Innovation and Entrepreneurship Training Project of China (202110446051), and the Doctoral Start-Up Scientific Research Foundation of Qufu Normal University.


Abstract

A practical and efficient protocol for the switchable synthesis of sulfoxides, sulfones, and thiosulfonates via Selectfluor-mediated oxidation of sulfides and thiols, respectively, at ambient temperature has been developed. All these organosulfur compounds can be prepared with nearly quantitative yields by applying eco-friendly H2O as O-source. The formation of sulfoxides and thiosulfonates takes only a few minutes (3–20 min). As suggested by the control experiments, the oxidation procedure might proceed through the fluorination of sulfide, nucleophilic addition with H2O, and elimination of hydrogen fluoride.

Supporting Information



Publication History

Received: 16 October 2021

Accepted after revision: 19 November 2021

Publication Date:
19 November 2021 (online)

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
    • 2b Jacob C. Nat. Prod. Rep. 2006; 23: 851
  • 3 Parker D, Bussink J, van de Grampel HT, Wheatley GW, Dorf E.-U, Ostlinning E, Reinking K. Polymers, High-Temperature . Wiley-VCH; Weinheim: 2000
    • 5a Merchant RR, Edwards JT, Qin T, Kruszyk MM, Bi C, Che G, Bao D.-H, Qiao W, Sun L, Collins MR, Fadeyi OO, Gallego GM, Mousseau JJ, Nuhant P, Baran PS. Science 2018; 360: 75
    • 5b Kaldre D, Klose I, Maulide N. Science 2018; 361: 664
  • 6 Landes BD, Petite JP, Flouvat B. Clin. Pharmacokinet. 1995; 28: 458
    • 7a Liu Q, Wang L, Yue H, Li J.-S, Luo Z, Wei W. Green Chem. 2019; 21: 1609
    • 7b Cui H, Wei W, Yang D, Zhang Y, Zhao H, Wang L, Wang H. Green Chem. 2017; 19: 3520
    • 7c Yu H, Li Z, Bolm C. Org. Lett. 2018; 20: 7104
    • 7d Jia T, Zhang M, Sagamanova IK, Wang CY, Walsh PJ. Org. Lett. 2015; 17: 1168
    • 7e Jia T, Bellomo A, Montel S, Zhang M, El Baina K, Zheng B, Walsh PJ. Angew. Chem. Int. Ed. 2014; 53: 260
    • 7f Izquierdo F, Chartoire A, Nolan SP. ACS Catal. 2013; 3: 2190
    • 7g Lenstra DC, Vedovato V, Flegeau EF, Maydom J, Willis MC. Org. Lett. 2016; 18: 2086
    • 7h Yu H, Li Z, Bolm C. Org. Lett. 2018; 20: 2076
    • 8a Zhu H, Shen Y, Wen D, Le Z.-G, Tu T. Org. Lett. 2019; 21: 974
    • 8b Chen Y, Willis MC. Chem. Sci. 2017; 8: 3249
    • 8c Pandya VG, Mhaske SB. Org. Lett. 2014; 16: 3836
    • 8d Umierski N, Manolikakes G. Org. Lett. 2013; 15: 188
    • 8e Sun K, Chen X.-L, Li S.-J, Wei D.-H, Liu X.-C, Zhang Y.-L, Liu Y, Fan L.-L, Qu L.-B, Yu B, Li K, Sun Y.-Q, Zhao Y.-F. J. Org. Chem. 2018; 83: 14419
    • 8f Yue H, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 1371
    • 9a Yu B, Liu A.-H, He L.-N, Li B, Diao Z.-F, Li Y.-N. Green Chem. 2012; 14: 957
    • 9b Yu B, Guo C.-X, Zhong C.-L, Diao Z.-F, He L.-N. Tetrahedron Lett. 2014; 55: 1818
  • 10 Cheng Z, Sun P, Tang A, Jin W, Liu C. Org. Lett. 2019; 21: 8925
    • 11a Li Y, Rizvi SA.-e.-A, Hu D, Sun D, Gao A, Zhou Y, Li J, Jiang X. Angew. Chem. Int. Ed. 2019; 58: 13499
    • 11b Li Y, Wang M, Jiang X. ACS Catal. 2017; 7: 7587
    • 12a Liu K.-J, Deng J.-H, Yang J, Gong S.-F, Lin Y.-W, He J.-Y, Cao Z, He W.-M. Green Chem. 2020; 22: 433
    • 12b Liu K.-J, Wang Z, Lu L.-H, Chen J.-Y, Zeng F, Lin Y.-W, Cao Z, Yu X, He W.-M. Green Chem. 2021; 23: 496
  • 13 Li C, Mizuno N, Murata K, Ishii K, Suenobu T, Yamaguchi K, Suzuki K. Green Chem. 2020; 22: 3896
  • 14 Meninno S, Parrella A, Brancatelli G, Geremia S, Gaeta C, Talotta C, Neri P, Lattanzi A. Org. Lett. 2015; 17: 5100
  • 15 Boruah JJ, Das SP, Ankireddy SR, Gogoi SR, Islam NS. Green Chem. 2013; 15: 2944
  • 16 Koo DH, Kim M, Chang S. Org. Lett. 2005; 7: 5015
  • 17 Laudadio G, Straathof NJ. W, Lanting MD, Knoops B, Hessel V, Noël T. Green Chem. 2017; 19: 4061
    • 18a Jiang X, Yao C, Tong C, Bai R, Zhou T, Xie Y. Chin. J. Org. Chem. 2020; 40: 1752
    • 18b Tong Q.-L, Fan Z.-F, Yang J.-W, Li Q, Chen Y.-X, Cheng M.-S, Liu Y. Catalysts 2019; 9: 791
    • 18c Mirfakhraei S, Hekmati M, Eshbala FH, Veisi H. New J. Chem. 2018; 42: 1757
  • 19 Yang K, Song M, Ali AI. M, Mudassir SM, Ge H. Chem. Asian. J. 2020; 15: 729
    • 20a Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong C.-H. Angew. Chem. Int. Ed. 2005; 44: 192
    • 20b Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 20c Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073

      Partial oxidation of sulfides with Selectfluor as oxidant has been mentioned in the following:
    • 21a Vincent SP, Burkart MD, Tsai C.-Y, Zhang Z, Wong C.-H. J. Org. Chem. 1999; 64: 5264
    • 21b Liu Z, Wang Y, Huo J, Li X.-J, Li S, Song X. J. Org. Chem. 2021; 86: 5506
    • 21c Fang X, Wang W, Yang X, Wu F. Chin. J. Org. Chem. 2021; 41: 412
    • 21d He G, Li Y, Yu Z, Chen Z, Tang Y, Song G, Loh T.-P. Org. Chem. Front. 2019; 6: 3644
    • 21e Yang K, Zhang H, Niu B, Tang T, Ge H. Eur. J. Org. Chem. 2018; 5520
    • 22a Zhao Y, Guo X, Ding X, Zhou Z, Li M, Feng N, Gao B, Lu X, Liu Y, You J. Org. Lett. 2020; 22: 8326
    • 22b Zhao Y, Guo X, Si Z, Hu Y, Sun Y, Liu Y, Ji Z, You J. J. Org. Chem. 2020; 85: 13347
    • 22c Zhao Y, Liu X, Zheng L, Du Y, Shi X, Liu Y, Yan Z, You J, Jiang Y. J. Org. Chem. 2020; 85: 912
    • 22d Shen D, Wang H, Zheng Y, Zhu X, Gong P, Wang B, You J, Zhao Y, Chao M. J. Org. Chem. 2021; 86: 5354
    • 22e Cui X.-Y, Zhao Y.-L, Chen Y.-M, Dong S.-Z, Zhou F, Wu H.-H, Zhou J. Org. Lett. 2021; 23: 4864
    • 22f Zhao Y, Guo X, Zhang R, Li S, Chen T, Sun X. J. Org. Chem. 2021; 86: 15568
    • 22g Zhao Y, Li S, Fan Y, Guo X, Jiao X, Tian L, Sun X. Eur. J. Org. Chem. 2021; 4358
    • 22h Zhao Y, Zhang Z, Liu X, Wang Z, Cao Z, Tian L, Yue M, You J. J. Org. Chem. 2019; 84: 1379
    • 22i Zhao Y, Xu M, Zheng Z, Yuan Y, Li Y. Chem. Commun. 2017; 53: 3721
    • 22j Zhao Y.-L, Cao Z.-Y, Zeng X.-P, Shi J.-M, Yu Y.-H, Zhou J. Chem. Commun. 2016; 52: 3943
  • 23 Nantes CI, Pereira ID, Bai R, Hamel E, Burnett JC, de Oliveira RJ, de Matos MF. C, Beatriz A, Yonekawa MK. A, Perdomo RT, de Lima DP, Bogo D, dos Santos ED. A. ChemMedChem 2020; 15: 449
  • 24 Khodyuk RG. D, Bai R, Hamel E, Lourenço EM. G, Barbosa EG, Beatriz A, dos Santos E.D. A. de Lima D. P. 2020; 101: 104017
    • 25a Kirihara M, Naito S, Ishizuka Y, Hanai H, Noguchi T. Tetrahedron Lett. 2011; 52: 3086
    • 25b Cao L, Luo S.-H, Jiang K, Hao Z.-F, Wang B.-W, Pang C.-M, Wang Z.-Y. Org. Lett. 2018; 20: 4754
    • 25c Jereb M, Hribernik L. Green Chem. 2017; 19: 2286
    • 25d Shyam PK, Kim YK, Lee C, Jang H.-Y. Adv. Synth. Catal. 2016; 358: 56
    • 25e Yang Z, Shi Y, Zhan Z, Zhang H, Xing H, Lu R, Zhang Y, Guan M, Wu Y. ChemElectroChem 2018; 5: 3619
    • 25f See also refs 23 and 24.

      For selected references on radical trapping reaction by TEMPO, see:
    • 26a Arcadi A, Chiarini M, Del Vecchio L, Marinelli F, Michelet V. Chem. Commun. 2016; 52: 1458
    • 26b Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
    • 27a Burkart MD, Zhang Z, Hung S.-C, Wong C.-H. J. Am. Chem. Soc. 1997; 119: 11743
    • 27b Freeman F, Angeletakis CN. J. Am. Chem. Soc. 1981; 103: 6232
    • 27c See also ref. 21.
  • 28 Melzig L, Rauhut CB, Naredi-Rainer N, Knochel P. Chem. Eur. J. 2011; 17: 5362
  • 29 Jiang J, Luo R, Zhou X, Chen Y, Ji H. Adv. Synth. Catal. 2018; 360: 4402
  • 30 Zhang Z, Wang S, Zhang Y, Zhang G. J. Org. Chem. 2019; 84: 3919
  • 31 Voutyritsa E, Triandafillidi I, Kokotos CG. Synthesis 2017; 49: 917
  • 32 Zhang G, Fu J.-G, Zhao Q, Zhang G.-S, Li M.-Y, Feng C.-G, Lin G.-Q. Chem. Commun. 2020; 56: 4688
  • 33 Cao L, Luo S.-H, Jiang K, Hao Z.-F, Wang B.-W, Pang C.-M, Wang Z.-Y. Org. Lett. 2018; 20: 4754
  • 34 Kim J, Park S, Kim H, Kim J. Tetrahedron Lett. 2020; 61: 152112
  • 35 Farng L.-PO, Kice JL. J. Am. Chem. Soc. 1981; 103: 1137